4728 Mechanics 1

1	70×9.8 or 70 g	B1	$=686$
	70×0.3		
	$686+21$	B1	$=21$
	707 N	M1	+ cvs [70(9.8+0.3) gets B1B1M1]
		$[4]$	

\(\left.$$
\begin{array}{|l|l|l|l|}\hline 2 & \begin{array}{l}+/-(40 \times 4-60 \times 3) \\
+/-([40+60] \mathrm{v} \\
+/-(40 \times 4-60 \times 3)=+/-([40+60] \mathrm{v} \\
\text { Speed }=0.2 \mathrm{~ms}^{-1}\end{array}
$$ \& B1 \& Difference of terms, accept with \mathrm{g}

B1

Same as heavier or opposite lighter/"she" \& M1 \& Am of terms, accept with g.

Accept inclusion of \mathrm{g} in equation.

Not if g used. SR 40x4-60x3=[40 + 60] v;

v=0.2, as heavier, award 5 marks\end{array}\right]\)| "Left" requires diagram for B1 |
| :--- |
| If same direction before collision award |
| B0B1M1A0B0 |

3 i		M1	Applies Pythagoras, requires +.
	$\sqrt{ }\left(12^{2}+15^{2}\right)$	A1	
	19.2 N	A1	
		M1	trig and R included between X and Y
	$\tan \theta=12 / 15, \tan \theta=15 / 12, \sin \theta=12 / 19.2, \cos \theta=15 / 19.2$	A1	Accept cv 19.2
	Bearing $=038.7^{\circ}$	A1 [6]	Accept 039 or 39 or art 39 from below (not given if X and Y transposed)
3ii	$E=19.2$	B1ft	ft cv 19.2
	Bearing $=180+38.7=219^{\circ}$	B1ft [2]	$180+$ cv $38.7(-360)$ or correct answer

4i	$\mathrm{v}=\mathrm{dx} / \mathrm{dt}$		M1	Uses differentiation, may be seen in (ii)
	$\mathrm{v}=4 \mathrm{t}^{3}-8 \times 2 \mathrm{t}$		A1	Accept with +c
	$\mathrm{v}(2)=4 \times 2^{3}-8 \times 2 \times 2$		M1	Substitutes 2 in cv v, explicit
		AG	A1	A0 if +c
	$x(2)=2^{4}-8 \times 2^{2}+16=0$	AG	B1 [5]	Substitutes 2 in displacement, explicit
4 ii	$\mathrm{a}=\mathrm{dv} / \mathrm{dt}$		M1	Uses differentiation of v formula
	$a=12 t^{2}-16$			Accept with $+c$
	$\mathrm{a}(2)=12 \times 2^{2}-16=32 \mathrm{~ms}^{-2}$		A1 [3]	A0 with +c

5ia	$250 \mathrm{a}=-150$	M1	Values used in N2L for trailer $\mathrm{F}=+/-150$
	$\mathrm{a}=-0.6 \mathrm{~ms}^{-2} \quad$ AG	A1 [2]	Or -ve convincingly argued
5ib		M1	Applies N2L to car or car/trailer with
	$900 \mathrm{x}-0.6=\mathrm{D}-600$ or $(900+250) \mathrm{x}-0.6=\mathrm{D}-600-150$	A1	correct number of forces
	$\mathrm{D}=60 \mathrm{~N}$	A1 [3]	(including T if $\mathrm{T}=0$ used later)
5 ic	$15^{2}=18^{2}+2 \mathrm{x}(-0.6) \mathrm{s}$	M1	Uses $\mathrm{v}^{2}=\mathrm{u}^{2}+2(+/-0.6) \mathrm{s}$ with 15,18
	$\mathrm{s}=82.5 \mathrm{~m}$	A1 [2]	Positive, allow from $18^{2}=15^{2}+2 \mathrm{x} 0.6 \mathrm{~s}$
5iia		M1	Applies N2L to car+trailer with F(driving) F (resisting), F (wt cmpt-allow without g), or each part, as above and T.
	$(900+250) \mathrm{a}=980-600-150$	A1	$900 \mathrm{a}=980-600+/-900 \times 9.8 \sin 3-\mathrm{T}$
5 iib	$+/-(900+250) \times 9.8 \sin 3$	A1	$250 \mathrm{a}=\mathrm{T}-150+/-250 \mathrm{x} 9.8 \sin 3$
	$\mathrm{a}=0.713 \mathrm{~ms}^{-2}$	A1 [4]	Allow (art) 0.71 from correct work
		M1	N2L for trailer, cv a, with correct number
	$250 \times 0.713=\mathrm{T}-150+250 \times 9.8 \sin 3$	A1	of forces of correct type. Or for car $900 \times 0.713=-\mathrm{T}-600+900 \times 9.8 \sin 3+980$
	$\mathrm{T}=200 \mathrm{~N}$	A1 $[3]$	Anything rounding to 200 (3sf)

7 i	$\mathrm{s}=0.5 \times 1.4 \times 0.8^{2}$	M1	Uses $\mathrm{s}=0.5 \mathrm{x} 1.4 \mathrm{t}^{2}$
	$\mathrm{s}=0.448 \mathrm{~m}$	A1	Not 0.45
	$\mathrm{v}=1.4 \times 0.8$	M1	Uses $\mathrm{v}=1.4 \mathrm{t}$
	$\mathrm{v}=1.12 \mathrm{~ms}^{-1}$	A1 [4]	
7ii	$0^{2}=1.12^{2}-2 \times 9.8 \mathrm{~s}$	M1	Uses $0^{2}=\mathrm{u}^{2}-2 \mathrm{gs}$ or $\mathrm{u}^{2}=2 \mathrm{gs}$
	$\mathrm{s}=0.064 \mathrm{~m}$	A1	Allow verification
	$0=1.12-9.8 t \quad(t=0.114 s)$	M1	or $0.064=1.12 \mathrm{t}-4.9 \mathrm{t}^{2}$
	$\mathrm{t}=(0.114+0.8)=0.914 \mathrm{~s}$	A1 [4]	Allow 0.91 \{or $0=1.12 \mathrm{t}-4.9 \mathrm{t}^{2}$ and halve t
7iii	Scalene triangle, base on t axis	B1	NB Award A1 for 0.91 on t axis if total
	right edge steeper and terminates on axis, or crosses axis at $\mathrm{t}=0.91$	$\begin{aligned} & \mathrm{B} 1 \\ & {[2]} \end{aligned}$	time not given in (ii)
7iv		M1	Uses N2L for A or B with attempt at 2 forces
		A1	Either
	$1.4 \mathrm{xA}=9.8 \mathrm{xA}-5.88$ or $1.4 \mathrm{xB}=5.88-9.8 \mathrm{xB}$	A1	
	$\mathrm{A}=0.7$	A1	Not 0.53
7 va	$B=0.525$	[4]	
	$\mathrm{T}=0.5 \times 9.8+2 \times 5.88$	M1	Uses tension and 0.5 g without particle weights
7vb	$\mathrm{T}=16.66 \mathrm{~N}$	$\mathrm{A} 1$ [2]	Allow 16.7
	$\mathrm{T}=4.9 \mathrm{~N}$	B1 $[1]$	

