4721 Core Mathematics 1

$4 \quad y=x^{\frac{1}{2}}$
$2 y^{2}-7 y+3=0 \quad \mathbf{M 1 *} \quad$ Use a substitution to obtain a quadratic or
$(2 y-1)(y-3)=0$
M1depCorrect method to solve a quadratic
A1
M1 Attempt to square to obtain x
A1
SR If first M1 not gained and 3 and $1 / 2$ given as final answers, award B1 5

$\mathbf{5}$		M1	Attempt to differentiate
		A1 $\quad k x^{-\frac{1}{2}}$	
	$=4\left(\frac{1}{\sqrt{9} x}\right)+1$	A1	
$\frac{\mathrm{d} y}{\mathrm{~d} x}$	$=\frac{7}{3}$	M1	Correct substitution of $x=9$ into their
		A1 $\frac{7}{3}$ only	
		$\mathbf{5}$	

$\begin{aligned} 6 \text { (i) } & (x-5)(x+2)(x+5) \\ & =\left(x^{2}-3 x-10\right)(x+5) \\ & =x^{3}+2 x^{2}-25 x-50\end{aligned}$
(ii)

B1 +ve cubic with 3 roots (not 3 line segments)
B1 $\sqrt{ }(0,-50)$ labelled or indicated on y-axis
B1 $(-5,0),(-2,0),(5,0)$ labelled or indicated on x-axis and no other x - intercepts

	3	
7 (i) $8<3 x-2<11$	M1	2 equations or inequalities both dealing with all 3 terms resulting in $a<k x<b$ 10 and 13 seen
$10<3 x<13$	A1	
$\frac{10}{3}<x<\frac{13}{3}$	A1	
	3	
(ii) $\quad x(x+2) \geq 0$	M1	Correct method to solve a quadratic
	A1	0, -2
	M1	Correct method to solve inequality
$x \geq 0, x \leq-2$	A1	
	4	

8 (i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-2 k x+1$	B1	One term correct
		B1	Fully correct
		2	
	$3 x^{2}-2 k x+1=0$ when $x=1$	M1	their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ soi
	$3-2 k+1=0$	M1	$x=1$ substituted into their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$
	$k=2$	A1 $\sqrt{1}$ 3 3	
	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=6 x-4$	M1	Substitutes $x=1$ into their $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ and looks at sign
	When $x=1, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}>0 \therefore$ min pt	A1	States minimum CWO
		2	
(iv)	$3 x^{2}-4 x+1=0$		$\text { their } \frac{\mathrm{d} y}{\mathrm{~d} x}=0$
	$(3 x-1)(x-1)=0$	M1	correct method to solve 3-term quadratic
	$x=\frac{1}{3}, x=1$		
	$x=\frac{1}{3}$	A1	$\mathbf{W W W}$ at any stage
		3	

