Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
1a	All readers of the online newspaper.	B1	1.2	2nd
				Understand the vocabulary of sampling.
		(1)		
1b	A list of readers who subscribe to the extra content.	B1	1.2	2nd
				Understand the vocabulary of sampling.
		(1)		
1c	The subscribers.	B1	1.2	2nd
				Understand the vocabulary of sampling.
		(1)		
1d	Advantage: accuracy of the data, unbiased.	B1	1.2	3rd
	Disadvantage: difficult to get a 100% response to a survey.	B1	1.2	Comment on the advantages and disadvantages of samples and censuses.
		(2)		
1e	Natural variation in a small sample.	B1	1.2	3rd
	Bias.	B1	1.2	Comment on the advantages and disadvantages of samples and censuses.
		(2)		
	1			(7 marks)

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
2ai	37 (minutes).	B1	1.1b	2nd
				Draw and interpret box plots.
		(1)		
2aii	Upper quartile or Q ₃ or third quartile or 75 th percentile or P ₇₅	B1	1.2	2nd Understand quartiles and percentiles.
		(1)		
2b	Outliers.	B1	1.2	3rd
	Sensible interpretation: For example: Observation that are very different from the other observations (and need to be treated with caution). Possible errors. These two children probably walked/took a lot longer.	B1	2.4	Recognise possible outliers in data sets.
	, , ,	(2)		
2 c	$50 + 1.5 \times 20 = 80 \text{ or } 30 - 1.5 \times 20 = 0$	M1	1.1b	4th
	Maximum value = 55 < 80 minimum value = 25 > 0	A1	1.1b	Calculate outliers in data sets and
	No outliers.	B1	1.1b	clean data.
		(3)		
2d	The scale must be the same as for school <i>A</i> .	B1	1.1b	2nd
	School B 0.0 10.0 20.0 30.0 40.0 50.0 60.0 Times (minutes)			Draw and interpret box plots.
	Box & whiskers 30, 37, 50	B1	1.1b	_
	25, 55	B1	1.1b	
		(3)		

2e	Three comparisons in context.	В3	2.2b	4th		
	Comment on comparing averages.			Compare data sets		
	For example, children from school A took less time on average.			using a range of familiar calculations and		
	Comment comparing consistency of times.			diagrams.		
	For example, there is less variation in the times for school <i>A</i> than school <i>B</i> .					
	Comment on comparing symmetry:					
	For example,both positive skew (or neither symmetrical or median closer to LQ (o.e.) for both). (Most children took a short time with a few taking longer.)					
	Comment on comparing outliers.					
	For example, school <i>A</i> has two children whose times are outliers (or errors) where as school <i>B</i> has no outliers.					
		(3)				
	,	(13 marks)				
	Notes					
2c						
Allow h	norizontal line through box.					

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
3a	Find total frequency = å width frequency density			2nd
	$= (5 \times 2) + (4 \times 4) + (4 \times 6) + (7 \times 5) + (15 \times 1) = 100$	M1	3.1a	Calculate
		A1	1.1b	probabilities from relative frequency
	35+15 50 1	M1	3.1a	tables and real
	P(Takes longer than 18 mins) = $\frac{35+15}{100} = \frac{50}{100} = \frac{1}{2}$ or	A1	1.1b	data.
	equivalent.			
		(4)		
3b	1	M1	2.2b	2nd
	$\frac{1}{3} \stackrel{?}{15} = 5$ P(Takes less than 30 mins) = $\frac{10 + 16 + 24 + 35 + 5}{100} = \frac{90}{100} = \frac{9}{10}$ or equivalent.	M1 A1	1.1b 1.1b	Calculate probabilities from relative frequency tables and real data.
		(3)		

(7 marks)

Notes

3a

M1 for attempt to find total frequency by adding at least three "width × frequency density" terms (which may contain errors). Alternative: M1 for $\frac{2}{3} \times 15 = 10$. M1 for $1 - \frac{"10"}{"100"}$. A1 for $\frac{9}{10}$ o.e.

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
4	H_0 : $p = 0.25$, H_1 : $p > 0.25$	B1	2.5	5th Carry out 1-tail
	Let <i>X</i> represent the number of seeds that germinate. (Under $H_{0)}$ <i>X</i> ~B(25, 0.25)	M1	3.4	tests for the binomial distribution.
	$P(X \ge 10) = 1 - P(X \le 9) = 0.0713$	M1	1.1b	
	> 0.05	A1	1.1b	
	10 is not in critical region therefore insufficient evidence to reject H ₀ .	B1	2.2b	
	There is insufficient evidence at the 5% level to suggest that the book has underestimated the probability. (o.e.)	B1	3.2a	

(6 marks)

Notes

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
5a	States or implies that $s = -80$	B1	3.1b	5th Use equations of
	States or implies that $a = -9.8$	B1	3.1b	motion to solve problems
	Writes $v^2 = u^2 + 2as$ or makes a substitution $v^2 = (16)^2 + 2(-9.8)(-80)$	M1	3.1b	involving vertical motion.
	Finds $v = 43 \text{ (m s}^{-1})$. Accept 42.7 (m s ⁻¹).	A1	1.1b	
		(4)		
5b	States or implies that $s = 5$ m.	B1	3.1b	5th
	Simplifies $5 = 16t - 4.9t^2$ to obtain $4.9t^2 - 16t + 5 = 0$	M1	1.1b	Use equations of motion to solve
	Makes an attempt to use the quadratic formula:	M1	1.1b	problems involving vertical motion.
	$t = \frac{16 \pm \sqrt{(-16)^2 - 4(4.9)(5)}}{2(4.9)}$			motion.
	Solves to find $t = 0.35$ (s). Accept awrt 0.35 (s).	A1	1.1b	
	Solves to find $t = 2.91$ (s). Accept awrt 2.92 (s).	A1	1.1b	
	States that the ball is above 85 m for 2.56 (s). Accept awrt 2.6 (s).	B1	3.2a	
		(6)		
5c	States or implies that at the greatest height $v = 0$	B1	3.1b	5th
	Finds the value of u : $u = \frac{1}{5} (42.7) = 8.54 \text{ (m s}^{-1})$. Accept awrt $8.5 \text{ (m s}^{-1})$.	M1	3.1b	Use equations of motion to solve problems involving vertical
	Writes $v^2 = u^2 + 2as$ or makes a substitution $(0)^2 = (8.54)^2 + 2(-9.8)(s)$	M1	3.1b	motion.
	Finds $s = 3.72(m)$. Accept awrt 3.7 (m).	A1 ft	1.1b	1
		(4)		

(14 marks)

Notes

5c

Award ft marks for a correct answer using their answer from part a.

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
6a	States that $a = -4$. $6 - 2 + a = 0$ may be seen.	B1	1.1b	4th
	States that $b = -5$. $-4 + 9 + b = 0$ may be seen.	B1	1.1b	Understand Newton's first law and the concept of equilibrium.
		(2)		
6b	States that $\mathbf{R} = 2\mathbf{i} - 9\mathbf{j}$ (N).	M1	1.1b	4th
	States that the magnitude of $\mathbf{R} = \sqrt{(2)^2 + (-9)^2}$	M1	1.1b	Calculate resultant forces using vectors.
	States $R = \sqrt{85}$ (N) or $R = 9.21$ (N). Accept awrt 9.2 (N).	A1	1.1b	
		(3)		
6c	States $\tan \theta = \frac{9}{2}$	M1	1.1b	4th Calculate
	Finds the value of θ : $\theta = 77.47(^{\circ})$. Accept awrt $\theta = 77.5 (^{\circ})$.	A1 ft	1.1b	resultant forces using vectors.
		(2)		

(7 marks)

Notes

6b

Award second method mark and accuracy mark for a correct answer using their *R*.

6c

Award ft marks for correct answer using their \mathbf{R} vector from part \mathbf{a} .

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
7a	$a = \frac{v - u}{t}$ seen or implied.	M1	3.1b	5th Use equations of
	Finds the value of a: $a = \frac{20 - 6}{35} = \frac{14}{35} = 0.4 \text{ m s}^{-2}$	A1	1.1b	motion to solve problems in familiar contexts.
		(2)		
7b	Use the fact that $\frac{t_1}{t_2} = \frac{4}{3}$ to write $3t_1 = 4t_2$ or $3t_1 - 4t_2 = 0$ or equivalent.	M1	1.1b	5th Use equations of motion to solve
	States or implies that $t_1 + t_2 = 35$	M1	3.1b	problems in familiar contexts.
	Solves to find $t_1 = 20$ or $t_2 = 15$. Could use substitution or simultaneous equations. Does not need to find both values for mark to be awarded as either value can be used going forward.	A1	1.1b	
	Use $v = u + at$ to write either $x = 6 + 0.4(20)$ or $20 = x + 0.4(15)$	M1	2.2a	
	Finds $x = 14 \text{ (m s}^{-1}).$	A1ft	1.1b	
		(5)		
7c	States or implies that $s = \left(\frac{u+v}{2}\right)t$	M1	2.2a	5th Use equations of
	Finds the value of s: $s = \left(\frac{6+20}{2}\right)(35) = 455$ (m).	A1	1.1b	motion to solve problems in familiar contexts.
		(2)		

(9 marks)

Notes

7b

Award ft marks for a correct answer using their value from part **a**.