Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
1a	All readers of the online newspaper.	B1	1.2	2nd Understand the vocabulary of sampling.
		(1)		
1b	A list of readers who subscribe to the extra content.	B1	1.2	2nd Understand the vocabulary of sampling.
		(1)		
1c	The subscribers.	B1	1.2	2nd Understand the vocabulary of sampling.
		(1)		
1d	Advantage: accuracy of the data, unbiased.	B1	1.2	3 rd Comment on the advantages and disadvantages of samples and censuses.
	Disadvantage: difficult to get a 100% response to a survey.	B1	1.2	
		(2)		
1e	Natural variation in a small sample.	B1	1.2	3rd
	Bias.	B1	1.2	Comment on the advantages and disadvantages of samples and censuses.
		(2)		
(7 marks)				

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
2ai	37 (minutes).	B1	1.1b	2nd Draw and interpret box plots.
		(1)		
2aii	Upper quartile or Q_{3} or third quartile or $75^{\text {th }}$ percentile or P_{75}	B1	1.2	2nd Understand quartiles and percentiles.
		(1)		
2b	Outliers. Sensible interpretation: For example: Observation that are very different from the other observations (and need to be treated with caution). Possible errors. These two children probably walked/took a lot longer.	B1 B1	1.2 2.4	3rd Recognise possible outliers in data sets.
		(2)		
2 c	$50+1.5 \times 20=80 \text { or } 30-1.5 \times 20=0$ Maximum value $=55<80$ minimum value $=25>0$ No outliers.	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	$\begin{aligned} & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$	4th Calculate outliers in data sets and clean data.
		(3)		
2d	The scale must be the same as for school A. Figure 1 Box \& whiskers 30, 37, 50 $25,55$	B1	1.1b	2nd Draw and interpret box plots.
		(3)		

2 e	Three comparisons in context. Comment on comparing averages. For example, children from school A took less time on average. Comment comparing consistency of times. For example, there is less variation in the times for school A than school B. Comment on comparing symmetry: For example, both positive skew (or neither symmetrical or median closer to LQ (o.e.) for both). (Most children took a short time with a few taking longer.) Comment on comparing outliers. For example, school A has two children whose times are outliers (or errors) where as school B has no outliers.	B3	2.2b	4th Compare data sets using a range of familiar calculations and diagrams.
		(3)		
(13 marks)				
Notes 2c Allow horizontal line through box.				

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
3a	Find total frequency $=$ width frequency density $=(5 \times 2)+(4 \times 4)+(4 \times 6)+(7 \times 5)+(15 \times 1)=100$ $\mathrm{P}($ Takes longer than 18 mins$)=\frac{35+15}{" 100 "}=\frac{50}{100}=\frac{1}{2}$ or equivalent.	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { A1 } \end{gathered}$	$\begin{aligned} & 3.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \\ & 3.1 \mathrm{a} \\ & 1.1 \mathrm{~b} \end{aligned}$	2nd Calculate probabilities from relative frequency tables and real data.
		(4)		
3b	$\begin{aligned} & \frac{1}{3} \quad 15=5 \\ & \mathrm{P}(\text { Takes less than } 30 \mathrm{mins})=\frac{10+16+24+35+5}{100}=\frac{90}{100}=\frac{9}{10} \\ & \text { or equivalent. } \end{aligned}$	M1 M1 A1	$\begin{aligned} & 2.2 \mathrm{~b} \\ & \\ & 1.1 \mathrm{~b} \\ & 1.1 \mathrm{~b} \end{aligned}$	2nd Calculate probabilities from relative frequency tables and real data.
		(3)		
(7 marks)				
Notes 3a M1 for attempt to find total frequency by adding at least three "width \times frequency density" terms (which may contain errors).Alternative: M 1 for $\frac{2}{3} \times 15=10$. M1 for $1-\frac{" 10 "}{" 100 "}$. A1 for $\frac{9}{10}$ o.e.				

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
4	$\mathrm{H}_{0}: p=0.25, \mathrm{H}_{1}: p>0.25$	B1	2.5	5th Carry out 1-tail tests for the binomial distribution.
	Let X represent the number of seeds that germinate. (Under H_{0}, $X \sim \mathrm{~B}(25,0.25$)	M1	3.4	
	$\mathrm{P}(X \geqslant 10)=1-\mathrm{P}(X \leqslant 9)=0.0713$	M1	1.1b	
	> 0.05	A1	1.1b	
	10 is not in critical region therefore insufficient evidence to reject H_{0}.	B1	2.2b	
	There is insufficient evidence at the 5% level to suggest that the book has underestimated the probability. (o.e.)	B1	3.2a	
				(6 marks)
Notes				

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
6a	States that $a=-4.6-2+a=0$ may be seen.	B1	1.1b	4th Understand Newton's first law and the concept of equilibrium.
	States that $b=-5 .-4+9+b=0$ may be seen.	B1	1.1b	
		(2)		
6b	States that $\mathbf{R}=2 \mathbf{i}-9 \mathbf{j}(\mathrm{~N})$.	M1	1.1b	4th Calculate resultant forces using vectors.
	States that the magnitude of $\mathbf{R}=\sqrt{(2)^{2}+(-9)^{2}}$	M1	1.1b	
	States $R=\sqrt{85}(\mathrm{~N})$ or $R=9.21 \ldots(\mathrm{~N})$. Accept awrt $9.2(\mathrm{~N})$.	A1	1.1b	
		(3)		
6 c	States $\tan \theta=\frac{9}{2}$	M1	1.1b	4th Calculate resultant forces using vectors.
	Finds the value of $\theta: \theta=77.47 \ldots\left({ }^{\circ}\right)$. Accept awrt $\theta=77.5\left(^{\circ}\right.$).	A1 ft	1.1b	
		(2)		
(7 marks)				
6b Award second method mark and accuracy mark for a correct answer using their R. 6c Award ft marks for correct answer using their \mathbf{R} vector from part \mathbf{a}.				

Q	Scheme	Marks	AOs	Pearson Progression Step and Progress descriptor
7a	$a=\frac{v-u}{t}$ seen or implied.	M1	3.1b	5th Use equations of motion to solve problems in familiar contexts.
	Finds the value of $a: a=\frac{20-6}{35}=\frac{14}{35}=0.4 \mathrm{~m} \mathrm{~s}^{-2}$	A1	1.1b	
		(2)		
7b	Use the fact that $\frac{t_{1}}{t_{2}}=\frac{4}{3}$ to write $3 t_{1}=4 t_{2}$ or $3 t_{1}-4 t_{2}=0$ or equivalent.	M1	1.1b	5th Use equations of motion to solve problems in familiar contexts.
	States or implies that $t_{1}+t_{2}=35$	M1	3.1b	
	Solves to find $t_{1}=20$ or $t_{2}=15$. Could use substitution or simultaneous equations. Does not need to find both values for mark to be awarded as either value can be used going forward.	A1	1.1b	
	Use $v=u+a t$ to write either $x=6+0.4(20)$ or $20=x+0.4$ (15)	M1	2.2a	
	Finds $x=14\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$.	A1ft	1.1b	
		(5)		
7c	States or implies that $s=\left(\frac{u+v}{2}\right) t$	M1	2.2a	5th Use equations of motion to solve problems in familiar contexts.
	Finds the value of s : $s=\left(\frac{6+20}{2}\right)(35)=455(\mathrm{~m})$.	A1	1.1b	
		(2)		
(9 marks)				
Notes				
Award ft marks for a correct answer using their value from part a.				

