Mark Scheme 4721 June 2006

\begin{tabular}{|c|c|c|c|c|c|}
\hline 1 \& \begin{tabular}{l}
(i) \\
(ii)
\end{tabular} \& \[
\frac{21-3}{4-1}=\frac{18}{3}=6
\]
\[
\begin{aligned}
\& \frac{\mathrm{d} y}{\mathrm{~d} x}=2 x+1 \\
\& 2 \times 3+1=7
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
B1 \\
B1
\end{tabular} \& \[
2
\]
\[
2
\] \& Uses \(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\) 6 (not left as \(\frac{18}{3}\)) \\
\hline 2 \& \begin{tabular}{l}
(i) \\
(ii) \\
(iii)
\end{tabular} \& \[
\begin{aligned}
\& 27^{-\frac{2}{3}}=\frac{1}{27^{\frac{2}{3}}}=\frac{1}{9} \\
\& \begin{aligned}
\& 5 \sqrt{5}=5^{\frac{3}{2}} \\
\& \begin{aligned}
\frac{1-\sqrt{5}}{3+\sqrt{5}} \& =\frac{(1-\sqrt{5})(3-\sqrt{5})}{(3+\sqrt{5})(3-\sqrt{5})} \\
\& =\frac{8-4 \sqrt{5}}{4} \\
\& =2-\sqrt{5}
\end{aligned}
\end{aligned} . \begin{array}{l}
\end{array} \\
\&
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
A1 \\
B1 \\
M1 \\
B1 \\
A1
\end{tabular} \& 2
1

3 \& | $\frac{1}{27^{\frac{2}{3}}}$ or $27^{\frac{2}{3}}=9$ or 3^{-2} soi $\frac{1}{9}$ |
| :--- |
| Multiply numerator and denominator by conjugate $\begin{aligned} & (\sqrt{5})^{2}=5 \text { soi } \\ & 2-\sqrt{5} \end{aligned}$ | \\

\hline 3 \& (i) \& $$
\begin{aligned}
2 x^{2}+12 x+13 & =2\left(x^{2}+6 x\right)+13 \\
& =2\left[(x+3)^{2}-9\right]+13 \\
& =2(x+3)^{2}-5
\end{aligned}
$$

\[
$$
\begin{aligned}
& 2(x+3)^{2}-5=0 \\
& (x+3)^{2}=\frac{5}{2} \\
& x=-3 \pm \sqrt{\frac{5}{2}}
\end{aligned}
$$

\] \& | B1 |
| :--- |
| M1 |
| A1 |
| M1 |
| A1 |
| A1 | \& 4 \& | $\begin{aligned} & a=2 \\ & b=3 \\ & 13-2 b^{2} \text { or } 13-b^{2} \text { or } \frac{13}{2}-b^{2} \text { (their } b \text {) } \\ & c=-5 \end{aligned}$ |
| :--- |
| Uses correct quadratic formula or completing square method $\begin{aligned} & x=\frac{-12 \pm \sqrt{40}}{4} \text { or }(x+3)^{2}=\frac{5}{2} \\ & x=-3 \pm \sqrt{\frac{5}{2}} \text { or }-3 \pm \frac{1}{2} \sqrt{10} \end{aligned}$ | \\

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline 4 \& \begin{tabular}{l}
(i) \\
(ii) \\
(iii)
\end{tabular} \& \[
\begin{aligned}
\& (x-4)(x-3)(x+1) \\
\& \equiv\left(x^{2}-7 x+12\right)(x+1) \\
\& \equiv x^{3}+x^{2}-7 x^{2}-7 x+12 x+12 \\
\& \equiv x^{3}-6 x^{2}+5 x+12
\end{aligned}
\]
 \& \begin{tabular}{l}
B1 \\
M1 \\
A1 \\
B1 \\
B1 \\
B1 \\
M1 \\
A1 \(\sqrt{ }\)
\end{tabular} \& 3

3

2 \& | $x^{2}-7 x+12 \text { or } x^{2}-2 x-3 \text { or } x^{2}-3 x-4 \text { seen }$ |
| :--- |
| Attempt to multiply a quadratic by a linear factor or attempt to list an 8 term expansion of all 3 brackets $x^{3}-6 x^{2}+5 x+12$ (AG) obtained (no wrong working seen) |
| +ve cubic with 3 roots (not 3 line segments) |
| $(0,12)$ labelled or indicated on y-axis |
| $(-1,0),(3,0),(4,0)$ labelled or indicated on x-axis |
| Reflect their (ii) in either x - or y-axis |
| Reflect their (ii) in x-axis | \\

\hline 5 \& (i) \& \[
$$
\begin{aligned}
& 1<4 x-9<5 \\
& 10<4 x<14 \\
& 2.5<x<3.5 \\
& \\
& y^{2} \geq 4 y+5 \\
& y^{2}-4 y-5 \geq 0 \\
& (y-5)(y+1) \geq 0 \\
& y \leq-1, y \geq 5
\end{aligned}
$$

\] \& | A1 |
| :--- |
| A1 |
| B1 |
| M1 |
| A1 |
| M1 |
| A1 | \& 3 \& | 2 equations or inequalities both dealing with all 3 terms |
| :--- |
| 2.5 and 3.5 seen oe |
| $2.5<x<3.5 \quad$ (or ' $x>2.5$ and $x<3.5$ ') $y^{2}-4 y-5=0 \text { soi }$ |
| Correct method to solve quadratic $-1,5$ |
| (SR If both values obtained from trial and improvement, award B3) |
| Correct method to solve inequality $y \leq-1, y \geq 5$ | \\

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline 6 \& (i)

(ii)

(iii) \& \begin{tabular}{l}
$$
x^{4}-10 x^{2}+25=0
$$ \\
Let $y=x^{2}$
$$
\begin{aligned}
& y^{2}-10 y+25=0 \\
& (y-5)^{2}=0 \\
& y=5 \\
& x^{2}=5 \\
& x= \pm \sqrt{5}
\end{aligned}
$$
$$
y=\frac{2 x^{5}}{5}-\frac{20 x^{3}}{3}+50 x+3
$$
$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x^{4}-20 x^{2}+50
$$
$$
\begin{aligned}
& 2 x^{4}-20 x^{2}+50=0 \\
& x^{4}-10 x^{2}+25=0
\end{aligned}
$$ \\
which has 2 roots

 \&

*M1 \\
dep*M1 \\
A1 \\
A1 \\
B1 \\
B1 \\
M1 \\
A1

 \& 4 \&

Use a substitution to obtain a quadratic or $\left(x^{2}-5\right)\left(x^{2}-5\right)=0$ \\
Correct method to solve a quadratic \\
5 (not $x=5$ with no subsequent working)

$$
x= \pm \sqrt{5}
$$ \\

$2 x^{4}$ or $-20 x^{2}$ oe seen \\
$2 x^{4}-20 x^{2}+50$ (integers required) \\
their $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ seen (or implied by correct answer) \\
2 stationary points www in any part
\end{tabular} \\

\hline 7 \& (i) \& \[
$$
\begin{aligned}
& y=x^{2}-5 x+4 \\
& y=x-1 \\
& x^{2}-5 x+4=x-1 \\
& x^{2}-6 x+5=0 \\
& (x-1)(x-5)=0 \\
& x=1 \quad x=5 \\
& y=0 \quad y=4
\end{aligned}
$$

\] \& | M1 |
| :--- |
| M1 |
| A1 |
| A1 | \& 4 \& | Substitute to find an equation in x (or y) |
| :--- |
| Correct method to solve quadratic $\begin{aligned} & x=1,5 \\ & y=0,4 \end{aligned}$ |
| (N.B. This final A1 may be awarded in part (ii) if y coordinates only seen in part (ii)) |
| SR one correct (x, y) pair www | \\

\hline \& | (ii) |
| :--- |
| (iii) | \& | 2 points of intersection |
| :--- |
| EITHER $\begin{aligned} & x^{2}-5 x+4=x+c \text { has } 1 \text { solution } \\ & x^{2}-6 x+(4-c)=0 \\ & b^{2}-4 a c=0 \\ & 36-4(4-c)=0 \\ & c=-5 \end{aligned}$ |
| OR $\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=1=2 x-5 \\ & x=3 \quad y=-2 \\ & -2=3+c \\ & c=-5 \end{aligned}$ | \& | B1 |
| :--- |
| M1 |
| M1 |
| A1 |
| A1 |
| M1 |
| A1 |
| A1 |
| A1 | \& 1

4

4 \& | $\begin{aligned} & x^{2}-5 x+4=x+c \text { has } 1 \text { soln seen or } \\ & \text { implied } \\ & \text { Discriminant }=0 \quad \text { or }(x-a)^{2}=0 \text { soi } \\ & 36-4(4-c)=0 \text { or } 9=4-c \\ & c=-5 \end{aligned}$ |
| :--- |
| Algebraic expression for gradient of curve = non-zero gradient of line used $2 x-5=1$ $x=3$ $c=-5$ |
| SR $c=-5$ without any working | \\

\hline
\end{tabular}

8	(i) (ii) (iii) ($\begin{aligned} & \text { Height of box }=\frac{8}{x^{2}} \\ & 4 \text { vertical faces }=4 \times \frac{8}{x} \\ & =\frac{32}{x} \\ & \text { Total surface area }=x^{2}+x^{2}+\frac{32}{x} \\ & A=2 x^{2}+\frac{32}{x} \\ & \frac{\mathrm{~d} A}{\mathrm{~d} x}=4 x-\frac{32}{x^{2}} \\ & 4 x-\frac{32}{x^{2}}=0 \\ & 4 x^{3}=32 \\ & x=2 \end{aligned}$	B1 dep on both ** B1 B1 B1 M1 A1 M1 A1	3	$\begin{aligned} \text { Area of } 1 \text { vertical face } & =\frac{8}{x^{2}} \times x \\ & =\frac{8}{x} \end{aligned}$ Correct final expression $4 x$ $k x^{-2}$ $-32 x^{-2}$ $\frac{\mathrm{d} A}{\mathrm{~d} x}=0 \quad \text { soi }$ $x=2$ Check for minimum Correctly justified SR If $x=2$ stated $\mathbf{w w w}$ but with no evidence of differentiated expression(s) having been used in part (iii) B1

9	(i)	$\left(\frac{4+10}{2}, \frac{-2+6}{2}\right)$	M1 A1	2	Uses $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
		$(7,2)$		2	$(7,2) \quad$ (integers required)
	(ii)	$\sqrt{(7-4)^{2}+(2--2)^{2}}$	M1		Uses $\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
		$\begin{aligned} & =\sqrt{3^{2}}+4^{2} \\ & =5 \end{aligned}$	A1	2	5
	(iii)	$(x-7)^{2}+(y-2)^{2}=25$	$\mathrm{B} 1 \sqrt{ }$ $\mathrm{B} 1 \sqrt{ }$		$(x-7)^{2}$ and $(y-2)^{2}$ used (their centre)
					$r^{2}=25$ used (their r^{2})
			B1	3	$(x-7)^{2}+(y-2)^{2}=25$ cao
					Expanded form: $-14 x$ and $-4 y$ used $r=\sqrt{g^{2}}+f^{2}-c$ used $\sqrt{ }$ $x^{2}+y^{2}-14 x-4 y+28=0$ B1 $\sqrt{ }$ B1 cao
					By using ends of diameter: $(x-4)(x-10)+(y+2)(y-6)=0$ Both x brackets correct B1 $\begin{array}{ll}\text { Both } y \text { brackets correct } & \text { B1 } \\ \text { Final equation fully correct } & \text { B1 }\end{array}$
	(iv)	Gradient of $A B=\frac{6--2}{10-4}=\frac{4}{3}$	B1		oe
		$\text { Gradient of tangent }=-\frac{3}{4}$	B1 $\sqrt{ }$		
			M1		Correct equation of straight line through A, any non-zero gradient
		$y--2=-\frac{3}{4}(x-4)$	A1		
		$3 x+4 y=4$	A1	5	a, b, c need not be integers

