AQA

Level 3 Certificate

 Mathematical Studies1350/2A Statistical Techniques
Final Mark scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Key to mark scheme abbreviations

M	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
A	mark is dependent on M or m marks and is for accuracy
B	mark is independent of M or m marks and is for method and accuracy
E	mark is for explanation
\checkmark or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
$-x$ EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
c	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award full marks. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn no marks.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns full marks, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains no marks.

Otherwise we require evidence of a correct method for any marks to be awarded.

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

\mathbf{Q}	Answer	Mark	Comments

1(b)	Alternative method 1		
	$\begin{aligned} & 37.49 \times 24 \text { or } 899 .(\ldots) \\ & \text { or } \\ & 37.49 \times 0.7 \text { or } 26 .(\ldots) \end{aligned}$	M1	
	```their 899.(...)\times 0.7 or 629.(...) or their 26.(...)\times 24 or 629.(...) or 629.(...)```	M1	
	their 629.(...)+109.99 or 739.(...)	M1	
	739.8(...) and No or 739.75 and No	A1	AWRT 739.8   Condone 739.85


Q	Answer	Mark	Comments


	Alternative method 2		
	$37.49 \times 24$ or $899 .(\ldots)$   or   $37.49 \times 0.7$ or $26 .(\ldots)$	M1	
	1(b)   their $899 .(\ldots) \times 0.7$ or $629 .(\ldots)$   or   their $26 .(\ldots) \times 24$ or $629 .(\ldots)$   or   $629 .(\ldots)$	M1	M1


	$70 .(\ldots)<109.99$ and No	A1	



Q	Answer	Mark	Comments


2(a)	80000	B 1	


	Always Young		
2(b)	$\frac{16.9-13.7}{16.9}(\times 100 \%)$   or   13.7( $\times 100 \%$ ) and compares with $100 \%$	M1	oE $\begin{aligned} & \text { SC2 for } \\ & \frac{1}{5} \times 764000=152800 \neq 136000 \\ & \text { or } 764000-152800=611200 \neq 628000 \\ & \hline \end{aligned}$


	$16.9$   or $\frac{4}{5} \times 16.9$		or $\frac{136000}{764000}(\times 100 \%)=17.8 \%$   or $\frac{628000}{764000}(\times 100 \%)=82.2 \%$   and   Always Young is wrong/the statement is incorrect/it isn't quite one-fifth/ could be true it's nearly one-fifth
	[18.9,19] \%   or   13.5(...) and 13.7 seen	A1	
	Always Young is wrong or the statement/headline is incorrect or it isn't quite one-fifth or could be true it's nearly one-fifth	E1	E1 one correct statement/agreement OE
	Dynamic Youth		
	Working out the total number men 16-24 or women aged 16-24   Men: $362000 \div 0.152$   or   Women: $265000 \div 0.121$	M1	This can be implied in the correct number of men/women aged 16-24 given below
	Any value within range [2380 000, 2400 000]	A1	
	Any value within range [2 100 000, 2200 000]	A1	
	Putting their values as a ratio with attempts to simplify it (i.e 1.09:1 etc) or comparing it to 11:10	A1	
	Ratio of 1.09:1 calculated and Dynamic Youth is correct/the statement/headline is correct	E1	OE


	Additional Guidance	
	For Always Young, if candidates use $15.1 \% / 12.2 \% ~ l e a d i n g ~ t o ~$   $15.1 \% / 12.3 \% ~ l e a d i n g ~ t o ~$   $18.5(\ldots) \%$ can score M1 A0 E1	


Q	Answer	Mark	Comments


2(c)	Any three of   Display figures in tables e.g. give the   actual figures for each quarter/year   rather than the differences   Ensure data is accurate before   publishing it (eg for 16-24, 362 000   (men) + 265 000 (women) $\neq 628$ 000)   Use a consistent time period   throughout (eg for youth long term   unemployment, the period was August   - October but in all other parts of the   briefing paper, references were made   for September - November)	E3	E1 for each valid suggestion   Ignore any additional but incorrect   suggestions   SC1 (for two or three errors identified with   no/incorrect suggestions for improvement)
Improve clarity of definitions   Graph needs to be more accurate eg   larger scale   Sort into categories   Axes need to be labelled   Use more charts (to make information   clearer)	OE		


$\mathbf{Q}$	Answer	Mark	Comments


3(a)			


3(b)	$(z=) \frac{M-65}{11} \text { seen }$	M1	
	$\underline{M-65}=[0.25,0.26]$		
	11   and attempts to find $M$ by re-arranging the equation   or   (67.75, 67.86)	M1	
	67	A1	cao
	Additional Guidance		
	If candidates use 121 instead of 11 can score M0 M1 A0		


$\mathbf{Q}$	Answer	Mark	Comments


3(c)	$\begin{aligned} & 0.5 \times 30 \times 5 \\ & \text { or } \\ & 15 \times 5 \\ & \text { or } \\ & 75 \end{aligned}$	M1	
	(£) 75 and No or   (£)5 more needed	A1	OE
	Additional Guidance		


$\mathbf{Q}$	Answer	Mark	Comments


3(d)	$(z=)(60-65) \div 11 \text { or } \quad(-) \frac{5}{11}$   or (-) 0.45(...)	M1	Condone (65-60)
	$140 \div \mathrm{P}(z>\text { their } 0.45 . .)$   or $140 \div[0.67364,0.67724]$	M1	
	[206, 208]	A1	
	[236, 238]	A1ft	ft their [206, 208] + 30 with at least one M1 scored
	Additional Guidance		
	If candidates use 121 instead of 11 they can score M0 M1 A0 A1ft		


$\mathbf{Q}$	Answer	Mark	Comments


4(a)		B2	B2 for all four pairs correctly matched   B1 for two or three pairs correctly matched


4 (b)	pmcc for Jamir $\rightarrow[0.96,0.97]$	B1	
	(Jamir's data shows a) strong positive   correlation (so it is possible)   or   very close to 1	E1	
	Correct statement comes from their pmcc for Jamir calculated to be $>0.9$ but not $[0.96,0.97]$   can score B0E1		


4(c)	pmcc for Lily $\rightarrow$ [0.81, 0.82]	B1	
	(Lily's data shows a) positive   correlation but not as strong as Jamir   's pmcc is closer to 1   or   The correlation of lily's data is not as   strong (positive) as for Jamir's	E1	
	Correct statement comes from their pmcc for Lily calculated to be <0.9 but not [0.81, 0.82] can   score B0E1		


Q	Answer	Mark	Comments
4(d)(i)	All four points correctly plotted.	B2	B2 all four points correctly plotted   B1 two or three points correctly plotted
4(d)(ii)	$C=1893+0.107 S$	B2	for 1893 accept [1890, 1900]   for 0.107 accept [0.106, 0.107] or 0.11   B1 either value correct   Allow $y=1893+0.107 x$
	Correct line drawn from at least $S=6000 \text { to } S=12000$	B2	ft their equation $\pm 1 / 2$ square   B2 two points on their $C=1893+0.107 S$ and line drawn   B1 for at least one correct point identified or plotted
	Additional Guidance		
	For 6000, the coordinates are (6000, 2535)		
	For 12000 , the coordinates are ( 12000,3177$)$		
	Line has to be drawn for values of S from 6000 to 12000		


Q	Answer	Mark	Comments


4(d)(iii)	Alternative Method 1		
	$20000 \div 7$ or [2850, 2860]	M1	
	$\begin{aligned} & ([2850,2860]-\text { their } 1893) \div \text { their } \\ & 0.107 \end{aligned}$	M1dep	
	[8630, 9150]	A1ft	ft correct evaluation using their equation
	Alternative Method 2		
	$20000 \div 7$ or [2850, 2860]	M1	
	(Draws a line from their [2850, 2860] and) reads value from their regression line or their line of best fit	M1dep	Implied by correct reading
	Correct value from their line	A1ft	$\pm 1 / 2$ square


Q Answer
Q
5(a) 1.5 Mark Comments


5(b)	$\begin{aligned} & (z=)(59-59.6) \div \text { their } 1.5 \text { or }(-) \frac{2}{5} \\ & \text { or }(-) 0.4 \\ & \text { or } \\ & (z=)(59.8-59.6) \div \text { their } 1.5 \text { or }(-) \frac{2}{15} \\ & \text { or }(-) 0.13(33 \ldots) \end{aligned}$	M1	ft their answer to 5(a)   Condone (59.6-59) or (59.6-59.8)
	( $\mathrm{P}(\mathrm{z}<$ their 0.4$)=$ ) their 0.65542   or   $(\mathrm{P}(\mathrm{z}<$ their -0.4$)=$ ) their 0.34458   or   ( $\mathrm{P}(\mathrm{z}<$ their 0.13$)=$ ) their 0.55172   or   $(\mathrm{P}(\mathrm{z}>$ their 0.13$)=$ ) their 0.44828	M1dep	One correct reading
	their $\mathrm{P}(-0.4<\mathrm{z}<0.13)$	M1	OE eg shown diagrammatically on labelled Normal distribution curve or 0.55172-0.34458
	0.20(714)	A1ft	OE or better, eg 0.21 or 0.207 or 0.208 allow 0.2 if method seen ft their answer to 5(a)


Q	Answer	Mark	Comments


6(a)	Alternative method 1		
	$\frac{35.2+41.8}{2}$	M1	Mean/median temperature
	38.5	A1	
	$90 \%$ value $\rightarrow 1.64$ (49) or 1.64 seen	B1	1.64(49) can be implied in Cl calculation
	their 38.5 - their $1.64(49) \times \frac{\sigma}{\sqrt{n}}=35.2$ or their 38.5 + their $1.64(49) \times \frac{\sigma}{\sqrt{n}}=41.8$	M1	OE   M1 allow one error eg   use of $\sqrt{ } \sigma$ instead of $\sigma$   for using $n$ instead of $\sqrt{ } n$   using $\sigma$ and $n$ at the denominator and numerator
	$99 \%$ value $\rightarrow 2.57$ (58) or 2.58 seen	B1	2.57(58) can be implied in Cl calculation
	their $38.5 \pm$ their $2.57(58) \times(35.2$ - their 38.5 ) $\div$ - their 1.64 (49) or their $38.5 \pm$ their $2.57(58) \times(41.8$ - their 38.5) $\div$ their $1.64(49)$ or their $38.5 \pm$ their2.57(58)× their2.0(...)	M2	M2 for both correct expressions   M1 allow one error   Note: values must be substituted
	$\begin{aligned} & (33.3,43.7) \\ & \text { or } \\ & 38.5 \pm 5.17 \\ & \text { or } \\ & 38.5 \pm 5.2 \end{aligned}$	A1	


| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |



| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |


6(b)	37 lies in the given $90 \%$ or the calculated $99 \%$ confidence interval or accept similar explanation	B1ft	ft their 99\% confidence interval if used
	Claim is wrong/incorrect/not supported	E1	
	Additional Guidance		
	Only ft for the B1		

