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2,

It is suggested that the sequence a, = 2% +1, & ...1 produces only prime numbers.
(a) Show that g, a, and a, produce prime numbers.

Q, = 2.,[ 3
a, = 241=9S

a, = 294| :.l—'
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(b) Prove by counter example that the sequence does not always produce a prime number.
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Find the angle that the vector a = 4i — j+ 3k makes with the positive y-axis.
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3

g(x)= 3sin(%] - %x -1, 40 <x <20, x is in radians.

( )
(a) Show that the equation g(x) = 0 can be written as x = 6L J arcsm(; + %xh

(3 marks)

Lsin (x) = _z+l
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(b) Using the formulax = 6L {/ arcsmL (1 + LO X J ,X, =4, find, to 3 decimal places, the values of xi,
X2 and X3.
(2 marks)
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4. The first 3 terms of a geometric sequence are k +2, 4k, 2k*, k> 0. Find the value of k.
(4 marks)
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4 S 5 -
f(x)zx +2x" =29x° —4Tx+77

¥t =2x~15
ShOW that.£(8) canbewrticn as J2 x2+Qx+R+xZ3+fo5 and find the values of P, Q, R, V and W.
(7 marks)
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6.  Figure 1 shows a logo comprised of a rhombus surrounded by two arcs. Arc BAD has centre C and arc
BCD has centre A. Some of the dimensions of the logo are shown in the diagram.
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7.  C has parametric equations x = :

(a) Show that the cartesian equation of Cisy = (%)x + (8 —b

x = lige
¢
1([-&\: |+ L4k
K -2k = 404
-1 = k4Gt
-l = k(ouu)
£z =2C-!
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_2+bt

,-1£t£ 0.

Tj ,over an appropriate domain.

(4 marks)
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C has parametric equations x = =t , Y= 2ROl

i T it

3_15 t”‘O

(a) Show that the cartesian equation of Cisy = (%)x + (%) ,over an appropriate domain.

(4 marks)

Given that C is a line segment and that the gradient of the line is —1,

(b) show that the length of the line segment is a2 , where a is a rational number to be found.
(4 marks)

Z+b - - | C: 31—143 (1,2)




8.

A toy soldier is connected to a parachute. The soldier is thrown into the air from ground level. The height,
2
3
in metres, of the soldier above the ground can be modelled by the equation H = :t ;
+
H is height of the soldier above the ground and ¢ is the time since the soldier was thrown.

, 04 t§ 6s,where

(a) Showthath= 8(1_2t2)2. . g
dt 33/;(t2+1) uv - uv
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(b) Using the differentiated function, explain whether the soldier was increasing or decreasing in height
after 2 seconds.

Lohen =1

dH - EU-?\ - = Sqs
dt 23 (2s)
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A toy soldier is connected to a parachute. The soldier is thrown into the air from ground level. The height,
2

4¢3

t*+1

H is height of the soldier above the ground and ¢ is the time since the soldier was thrown.

in metres, of the soldier above the ground can be modelled by the equation H = , 0, t, 6s,where

8(1-21)

33/;(t2 +1)2 .

(a) Show that il =
dt

(4 marks)

(b) Using the differentiated function, explain whether the soldier was increasing or decreasing in height
after 2 seconds.
(2 marks)

(c¢) Find the exact time when the soldier reaches a maximum height.
(2 marks)
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9. (a) Show thattan® x =sec’ xtan® x +1—sec’ x.

(4 marks)
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(b) Hence find the exact value of J‘O% tan* xdx.
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10. Use proof by contradiction to show that, given a rational number a and an irrational number b, a — b is
irrational.

(4 marks)
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11. f(x)=[2x+3|-4,x€R
Ful= 4
(a) Sketch the graph of y = f(x), labelling its vertex and any points of intersection with the coordinate
axes.
(5 marks)
7
’l”' by
- q- 4'




(b) Find the coordinates of the points of intersection of y =[2x+3|—4and y = —%x +2.




12. (a) Prove that (sin36+cos36)* =1+sin66

(3 marks)
(SinlD+ CosBY S+ c5%)
- (A
- S]nl 15 + LSund® o8 + 5 IO
= | 4 L3AIBcosIO Smlx =TsaXcosx
= |4 sk Sialp = L3NG
(b) Use the result to solve, for 0& @ sg , the equation (sin36 + cos36) = 1’ 2 +2J5 .
Give your answer in terms of . Check for extraneous solutions.
(4 marks)
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13. f(x)= .. ,lx,<§.
2+3x 3-5x 3

(a) Show that the first three terms in the series expansion of f(x) can be written as 2. E 329 ——x*

S ( 24 'Sx\- (7 marks)
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(b) Find the exact value of £(0.01). Round your answer to 7 decimal places.
(2 marks)
floo) = L - 21.5%973% (149)
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(c) Find the percentage error made in using the series expansion in part (a) to estimate the value
of £(0.01).

Give your answer to 2 significant figures.
(3 marks)
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14. Jacob is making some patterns out of squares. The first 3 patterns in the sequence are shown in Figure 2.

Pattern 1 Pattern 2 Pattern 3
5
>
1]
Figure 2
(a) Find an expression, in terms of », for the number of squares required to make pattern .
(2 marks)
s ’ % i l ‘
Una
(b) Show that 3k* + 7k —1896=0.
(2 marks)
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15. Figure 3 shows part of the curve with equation y = xsin” x . The finite region bounded by the line with

equation x = g , the curve and the x-axis is shown shaded in the diagram.

Find the area of the shaded region.
(7 marks)
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