

Topic Test 1 (20 minutes)

Numerical methods - Higher

1 Use trial and improvement to solve $x^3 + 2x = 90$ Give your answer to 1 decimal place.

Complete the table.

[4 marks]

x	$x^3 + 2x$	Comment
3	33	Too low

x = ____

A solid is formed by a cube of side x cm and a cuboid with a square cross section of side 2 cm and a height of x cm
 The volume of the solid is 270 cm³

Use trial and improvement to work out the value of x. Give your answer to 1 decimal place.

Complete the table.

[4 marks]

x	$x^3 + 4x$	Comment
7	371	Too high

The quadratic equation $x^2 - 2x - 6 = 0$ can be rearranged to $x^2 = 2x + 6$ $x = \pm \sqrt{2x + 6}$ $u_{n+1} = +\sqrt{2u_n + 6}$ can be used to find the positive root. The iteration 3 (a) Start with $u_1 = 3$ 3 (a)(i) Write down u₂ and u₃ to 4 decimal places. U₂ = _____ U₃ = _____ Answer $u_{n+1} = -\sqrt{2u_n + 6}$ can be used to find the negative root. The iteration Start with $u_1 = -2$ U₂ = _____ U₃ = _____ 3 (b)(ii) Use your calculator to continue the iteration to find the negative root to 3 decimal places. Answer _____

[2 marks]

3 (a)(ii) Use your calculator to continue the iteration to find the positive root to 3 decimal places. [1 mark]

3 (b)

3 (b)(i) Write down u₂ and u₃ to 4 decimal places.

3

[2 marks]

[1 mark]

3 (c) The quadratic equation $x^2 - 2x - 6 = 0$ has exact roots of $1 + \sqrt{7}$ and $1 - \sqrt{7}$ Evaluate $1 + \sqrt{7}$ and $1 - \sqrt{7}$ to 3 decimal places.

[1 mark]

Answer _____ and ____

4 The equation $x^3 + 2x^2 - 5 = 0$ can be rearranged in the following way

$$x^{3} + 2x^{2} - 5 = 0$$

$$x^{2}(x + 2) - 5 = 0$$

$$x^{2} = \frac{5}{x + 2}$$

$$x = \sqrt{\frac{5}{x + 2}}$$

Use the iteration

Write down the first 3 iterations and the solution to 3 decimal places

 $u_{n+1} = \sqrt{\frac{5}{u_n + 2}}$ with $u_1 = 2$

[3 marks]

