4723 Core Mathematics 3

1 (i) Show correct process for composition of functions

Obtain (-3 and hence) -23
(ii) Either: State or imply $x^{3}+4=12$

Attempt solution of equation involving x^{3} Obtain 2

Or: Attempt expression for f^{-1}
Obtain $\sqrt[3]{x-4}$ or $\sqrt[3]{y-4}$
Obtain 2

M1 numerical or algebraic; the right way round

A1 2

B1
M1 as far as $x=\ldots$
A1 3 and no other value

M1
A1
A1 (3) and no other value

2 (i) Obtain correct first iterate 2.864
Carry out correct iteration process
Obtain 2.877

B1 or greater accuracy 2.864327...; condone 2 dp here and in working
M1
A1 3 after at least 4 steps; answer required to exactly 3 dp

$$
[3 \rightarrow 2.864327 \rightarrow 2.878042 \rightarrow 2.876661 \rightarrow 2.876800]
$$

(ii) State or imply $x=\sqrt[3]{31-\frac{5}{2} x}$

Attempt rearrangement of equation in x
Obtain equation $2 x^{3}+5 x-62=0$

3 (a) State correct equation involving $\cos \frac{1}{2} \alpha$

Attempt to find value of α
Obtain
151
(b) State or imply $\cot \beta=\frac{1}{\tan \beta}$

Rearrange to the form $\tan \beta=k$
Obtain 69.3
Obtain 111

B1

M1 involving cubing and grouping non-zero terms on LHS
A1 3 or equiv with integers

B1 such as $\cos \frac{1}{2} \alpha=\frac{1}{4}$ or $\frac{1}{\cos \frac{1}{2} \alpha}=4$
or ...
M1 using correct order for the steps
A1 3 or greater accuracy; and no other values between 0 and 180

B1
M1
A1
A1 4 4 or greater accuracy; and no others between 0 and 180

4 (i) Obtain derivative of form $k h^{5}\left(h^{6}+16\right)^{n}$

Obtain correct $3 h^{5}\left(h^{6}+16\right)^{-\frac{1}{2}}$
Substitute to obtain 10.7
(ii) Attempt multn or divn using 8 and answer from (i)

Attempt 8 divided by answer from (i)
Obtain 0.75

M1 any constant k; any $n<\frac{1}{2}$; allow if

- 4 term retained

A1 or (unsimplified) equiv; no -4 now
A1 3 or greater accuracy or exact equiv

M1
A1 $\sqrt{ } \mathbf{3}$ or greater accuracy; allow 0.75 ± 0.01; following their answer from (i)

5 (a) Obtain integral of form $k(3 x+7)^{10}$
Obtain (unsimplified) $\frac{1}{10} \times \frac{1}{3}(3 x+7)^{10}$
Obtain (simplified) $\frac{1}{30}(3 x+7)^{10}+c$
(b) State $\int \pi\left(\frac{1}{2 \sqrt{x}}\right)^{2} \mathrm{~d} x$

Integrate to obtain $k \ln x$

Obtain $\frac{1}{4} \pi \ln x$ or $\frac{1}{4} \ln x$ or $\frac{1}{4} \pi \ln 4 x$ or $\frac{1}{4} \ln 4 x \quad$ A1
Show use of the $\log a-\log b$ property
Obtain $\frac{1}{4} \pi \ln 2$

M1 any constant k
A1 or equiv
A1 3

B1 or equiv involving x; condone no $\mathrm{d} x$ M1 any constant k involving π or not; or equiv such as $k \ln 4 x$ or $k \ln 2 x$

M1 not dependent on earlier marks
A1 5 or similarly simplified equiv

6 (i) Either: Refer to translation and reflection
State translation by 1 in negative x-direction
State reflection in x-axis
Or: \quad Refer to translation and reflection
State reflection in y-axis
State translation by 1 in positive x-direction
(ii) Show sketch with attempt at reflection of 'negative' part in x-axis
Show (more or less) correct sketch
(iii) Attempt correct process for finding at least one value

Obtain $1-\frac{1}{2} \sqrt{3}$
Obtain $1+\frac{1}{2} \sqrt{3}$

B1 in either order; allow clear equivs
B1 or equiv but now using correct terminology
B1 3 using correct terminology
B1 in either order; allow clear equivs
B1
B1 (3) with order reflection then translation clearly intended

M1 and curve for $0<x<1$ unchanged
A1 2 with correct curvature
M1 as far as $x=\ldots$; accept decimal equivs (degrees or radians) or expressions involving $\sin \left(\frac{1}{3} \pi\right)$
A1 or exact equiv
A1 3 or exact equiv; give A1A0 if extra incorrect solution(s) provided

7 (i) Attempt use of product rule for $x \mathrm{e}^{2 x}$
Obtain $\mathrm{e}^{2 x}+2 x \mathrm{e}^{2 x}$
Attempt use of quotient rule
Obtain unsimplified $\frac{(x+k)\left(\mathrm{e}^{2 x}+2 x \mathrm{e}^{2 x}\right)-x \mathrm{e}^{2 x}}{(x+k)^{2}}$
Obtain $\frac{\mathrm{e}^{2 x}\left(2 x^{2}+2 k x+k\right)}{(x+k)^{2}}$
(ii) Attempt use of discriminant

Obtain $4 k^{2}-8 k=0$ or equiv and hence $k=2$
Attempt solution of $2 x^{2}+2 k x+k=0$

$$
\text { Obtain } x=-1
$$

Obtain $-\mathrm{e}^{-2}$

M1 obtaining $\ldots+\ldots$
A1

A1

A1 5 AG; necessary detail required

M1 using their numerical value of k or solving in terms of k using correct formula
A1
A1 5 or exact equiv

8 (i) State or imply $h=1$
Attempt calculation involving attempts at y values

Obtain $a(1+4 \times 2+2 \times 4+4 \times 8+2 \times 16+4 \times 32+64)$ A1
Obtain 91
(ii) State $\mathrm{e}^{x \ln 2}$ or $k=\ln 2$

Integrate $\mathrm{e}^{k x}$ to obtain $\frac{1}{k} \mathrm{e}^{k x}$
Obtain $\frac{1}{\ln 2}\left(\mathrm{e}^{6 \ln 2}-\mathrm{e}^{0}\right)$
Simplify to obtain $\frac{63}{\ln 2}$
(iii) Equate answers to (i) and (ii)

Obtain $\frac{63}{91}$ and hence $\frac{9}{13}$

B1

M1 addition with each of coefficients $1,2,4$ occurring at least once; involving at least $5 y$ values any constant a
A1 4
B1 allow decimal equiv such as $\mathrm{e}^{0.69 x}$
M1 any constant k or in terms of general k
A1 or exact equiv
A1 4 allow if simplification in part (iii)

M1 provided $\ln 2$ involved other than in power of e
A1 2 AG; necessary correct detail required

9 (i) State at least one of $\cos \theta \cos 60-\sin \theta \sin 60$
and $\cos \theta \cos 30-\sin \theta \sin 30$
Attempt complete multiplication of identities of form $\pm \cos \cos \pm \sin \sin$
Use $\cos ^{2} \theta+\sin ^{2} \theta=1$ and $2 \sin \theta \cos \theta=\sin 2 \theta$
Obtain $\sqrt{3}-2 \sin 2 \theta$
(ii) Attempt use of 22.5 in right-hand side

Obtain $\sqrt{3}-\sqrt{2}$
(iii) Obtain 10.7

Attempt correct process to find two angles
Obtain 79.3
(iv) Indicate or imply that critical values of $\sin 2 \theta$ are -1 and 1
Obtain both of $k>\sqrt{3}+2, k<\sqrt{3}-2$
Obtain complete correct solution

B1

M1 with values $\frac{1}{2} \sqrt{3}, \frac{1}{2}$ involved
M1
A1 4 AG; necessary detail required

M1
A1 2 or exact equiv

B1 or greater accuracy; allow ± 0.1
M1 from values of 2θ between 0 and 180
A1 3 or greater accuracy and no others between 0 and 90 ; allow ± 0.1

M1
A1 condoning decimal equivs, $\leq \geq$ signs
A1 3 now with exact values and unambiguously stated

