PURE MATHEMATICS

A level Practice Papers

PAPER Q MARK SCHEME

1 Correctly factorises the denominator of the left-hand fraction:
$\frac{6}{(2 x+5)(2 x \quad 1)}+\frac{3 x+1}{2 x \quad 1}$
Multiplies the right-hand fraction by $\frac{2 x+5}{2 x+5}$
For example: $\frac{6}{(2 x+5)(2 x \quad 1)}+\frac{(3 x+1)(2 x+5)}{(2 x \quad 1)(2 x+5)}$ is seen.

Makes an attempt to distribute the numerator of the right-hand fraction.
For example: $\frac{6+6 x^{2}+17 x+5}{(2 x+5)(2 x-1)}$ is seen.
Fully simplified answer is seen.
Accept either $\frac{6 x^{2}+17 x+11}{(2 x+5)(2 x-1)}$ or $\frac{(6 x+11)(x+1)}{(2 x+5)(2 x \quad 1)}$
TOTAL: 4 marks

2a	Uses $a_{n}=a+(n-1) d$ substituting $a=5$ and $d=3$ to get $a_{n}=5+(n-1) 3$	M1
	Simplifies to state $a_{n}=3 n+2$	A1
	(2 marks)	
$\mathbf{2 b}$	Use the sum of an arithmetic series to state $\frac{k}{2}[10+(k-1) 3]=948$	M1
	States correct final answer $3 k^{2}+7 k-1896=0$	A1
	TOTAL: $\quad \mathbf{4}$ marks	$\mathbf{(2 ~ m a r k s) ~}$

3a	Deduces from $\quad 3 \sin \left(\frac{x}{6}\right)^{3} \quad \frac{1}{10} x \quad 1=0$ that $3 \sin \left(\frac{x}{6}\right)^{3}=\frac{1}{10} x+1$	M1
	States $\left(\frac{x}{6}\right)^{3}=\arcsin \left(\frac{1}{3}+\frac{1}{30} x\right)$	M1
	Multiplies by 6^{3} and then takes the cube root: $\left.\quad x=6\left(\sqrt[3]{\arcsin \left(\frac{1}{3}+\frac{1}{30} x\right.}\right)\right)$	A1
3b	Attempts to use iterative procedure to find subsequent values.	$\mathbf{(3}$ marks)
	Correctly finds: $\quad x_{1}=4.716 \quad x_{2}=4.802 \quad x_{3}=4.812$	$x_{4}=4.814$
	TOTAL:	$\mathbf{5}$ marks

NOTES: 3b

Award M1 if finds at least one correct answer.

4a	Shows that $2 \cos 3 \approx 2\left(1 \frac{9^{2}}{2}\right)=29^{2}$	M1
	Shows that $2 \cos 3 \quad 1 \begin{array}{llll} \\ \end{array}{ }^{2}=\left(\begin{array}{ll}1 & 3\end{array}\right)(1+3)$	M1
	Shows $1+\sin +\tan 2=1++2=1+3$	M1
	Recognises that $\frac{1+\sin \theta+\tan 2 \theta}{2 \cos 3 \theta-1} \approx \frac{1+3 \theta}{(1-3 \theta)(1+3 \theta)}=\frac{1}{1-3 \theta}$	A1
		(4 marks)
4b	When θ is small, $\frac{1}{1-3 \theta} \approx 1$	A1
		(1 mark)
	TOTAL: 5 marks	

5a	Writes out the first n terms of the arithmetic sequence in both ascending and descending form$\begin{aligned} & S=a+(a+d)+(a+2 d)+\ldots+(a+(n-1) d) \\ & S=(a+(n-1) d)+(a+(n-2) d)+(a+(n-3) d)+\ldots+a \end{aligned}$	M1
	Attempts to add these two sequences $\quad 2 S=(2 a+(n-1) d) \times n$	M1
	States $\quad S=\frac{n}{2}(2 a+(n-1) d)$	A1
		(3 marks)
5b	Makes an attempt to find the sum. For example, $S=\frac{200}{2}(2+199(2))$ is seen.	M1
	States correct final answer. $\quad S=40000$	A1
		(2 marks)
	TOTAL: 5 marks	

NOTES: 5a Do not award full marks for an incomplete proof.
5a Do award second method mark if student indicates that ($2 a+(n-1) d$ appears n times.

NOTES:

This question can be solved by first writing $\left(A x^{2}+B x+C\right)(x+6)+D \quad x^{3}+8 x^{2} \quad 9 x+12$ and then solving for A, B, C and D. Award 1 mark for the setting up the problem as described. Then award 1 mark for each correct coefficient found. For example:
Equating the coefficients of $x^{3}: A=1$
Equating the coefficients of $x^{2}: 6+B=8$, so $B=2$
Equating the coefficients of $x: 12+C=-9$, so $C=-21$
Equating the constant terms: $-126+D=12$, so $D=138$

7	Begins the proof by assuming the opposite is true. Assumption: there is a finite amount of prime numbers.'	B1
	Considers what having a finite amount of prime numbers means by making an attempt to list them: Let all the prime numbers exist be $p_{1}, p_{2}, p_{3}, \ldots p_{n}$	M1
	Consider a new number that is one greater than the product of all the existing prime numbers: Let $N=\left(\begin{array}{lllll}p_{1} & p_{2} & p_{3} & \ldots & p_{n}\end{array}\right)+1$	M1
	Understands the implication of this new number is that division by any of the existing prime numbers will leave a remainder of 1 . So none of the existing prime numbers is a factor of N.	M1
	Concludes that either N is prime or N has a prime factor that is not currently listed.	B1
	Recognises that either way this leads to a contradiction, and therefore there is an infinite number of prime numbers.	B1
	TOTAL: 6 marks	

NOTES: If N is prime, it is a new prime number separate to the finite list of prime numbers, $p_{1}, p_{2}, p_{3}, \ldots p_{n}$.
If N is divisible by a previously unknown prime number, that prime number is also separate to the finite list of prime numbers.

8	Makes an attempt to differentiate $y=\ln 3 x$ using the chain rule, or otherwise.	M1
Differentiates $y=\ln 3 x-\mathrm{e}^{-2 x}$ to obtain $\quad \frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x}+2 \mathrm{e}^{-2 x}$	A1	
Evaluates $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at $x=1$	$\frac{\mathrm{~d} y}{\mathrm{~d} x}=1+\frac{2}{\mathrm{e}^{2}}=\frac{\mathrm{e}^{2}+2}{\mathrm{e}^{2}}$	A1
Evaluates $y=\ln 3 x-\mathrm{e}^{-2 x}$ at $x=1 \quad y=\ln 3-\mathrm{e}^{-2}=\ln 3-\frac{1}{\mathrm{e}^{2}}$	M1	
Attempts to substitute values into $y-y_{1}=m\left(x-x_{1}\right) \quad$ E.g. $y-\ln 3+\frac{1}{\mathrm{e}^{2}}=\left(\frac{\mathrm{e}^{2}+2}{\mathrm{e}^{2}}\right)(x-1)$ is seen.	M1 ft	
Shows logical progression to simplify algebra, arriving at: $\quad y=\left(\frac{\mathrm{e}^{2}+2}{\mathrm{e}^{2}}\right) x-\left(\frac{\mathrm{e}^{2}+3}{\mathrm{e}^{2}}\right)+\ln 3$	A1	
TOTAL: $\quad \mathbf{6}$ marks		

NOTES: Award ft marks for a correct attempt to substitute into the formula using incorrect values.

9a Clearly states that $\int \frac{6}{x} \mathrm{~d} x=6 \ln x$ A1 Makes an attempt to integrate the remaining two terms. Raising a power by 1 would constitute an attempt. M1 States the fully correct answer $6 \ln x-\frac{3}{x}-2 x^{\frac{7}{2}}+C$ A1 $9 b$ Makes an attempt to substitute the limits into the expression. For example, $\left(6 \ln 9-\frac{3}{9}-2(2187)\right)-\left(6 \ln 4-\frac{3}{4}-2(128)\right)$ is seen. (3 marks) Begins to simplify this expression. For example, $6 \ln \frac{9}{4}+\frac{5}{12}-4118$ is seen. M1 States the fully correct answer $-\frac{49411}{12}+6 \ln \frac{9}{4}$ or $\operatorname{states} m=-\frac{49411}{12}, n=6$ and $p=\frac{9}{4}$ A1 Also accept $-\frac{49411}{12}+12 \ln \frac{3}{2}$ or equivalent.

10a	Correctly states $\cos (5 x+2 x) \equiv \cos 5 x \cos 2 x-\sin 5 x \sin 2 x$	M1
	$\begin{aligned} \text { Correctly states } & \cos (5 x-2 x) \equiv \cos 5 x \cos (-2 x)-\sin 5 x \sin (-2 x) \\ \text { or states } & \cos (5 x-2 x) \equiv \cos 5 x \cos (2 x)+\sin 5 x \sin (2 x) \end{aligned}$	M1
Adds the two above expressions and states $\cos 7 x+\cos 3 x \equiv 2 \cos 5 x \cos 2 x$		A1
		(3 marks)
10b	States that $\int(\cos 5 x \cos 2 x) \mathrm{d} x=\frac{1}{2} \int(\cos 7 x+\cos 3 x) \mathrm{d} x$	M1
Makes an attempt to integrate. Changing cos to sin constitutes an attempt.		M1
Correctly states the final answer $\frac{1}{14} \sin 7 x+\frac{1}{6} \sin 3 x+C$ o.e.		A1
		(3 marks)
TOTAL: 6 marks		

NOTES: 10b

Student does not need to state ' +C ' to be awarded the first method mark.
Must be stated in the final answer.

Understands that integration is required to solve the problem.	M1
For example, writes $\int_{\frac{\pi}{2}}^{\pi}\left(x \sin ^{2} x\right) \mathrm{d} x$	
Uses the trigonometric identity $\cos 2 x \equiv 1-2 \sin ^{2} x$ to rewrite $\int_{\frac{\pi}{2}}^{\pi} x \sin ^{2} x \mathrm{~d} x$ as $\int_{\frac{\pi}{2}}^{\pi}\left(\frac{1}{2} x-\frac{1}{2} x \cos 2 x\right) \mathrm{d} x$ o.e.	M1
Shows $\quad \int_{\frac{\pi}{2}}^{2} \frac{1}{2} x \mathrm{~d} x=\left[\frac{1}{4} x^{2}\right]_{\frac{\pi}{2}}^{\pi}$	A1
Demonstrates an understanding of the need to find $\int_{\frac{\pi}{2}}^{\pi} \frac{1}{2} x \cos 2 x \mathrm{~d} x$ using integration by parts. For example, $u=x, \frac{\mathrm{~d} u}{\mathrm{~d} x}=1$ $\frac{\mathrm{d} v}{\mathrm{~d} x}=\cos 2 x, v=\frac{1}{2} \sin 2 x$ o.e. is seen.	M1
States fully correct integral $\int_{\frac{\pi}{2}}^{\pi}\left(\frac{1}{2} x-\frac{1}{2} x \cos 2 x\right) \mathrm{d} x=\left[\frac{1}{4} x^{2}-\frac{1}{4} x \sin 2 x-\frac{1}{8} \cos 2 x\right]_{\frac{\pi}{2}}^{\pi}$	A1
Makes an attempt to substitute the limits $\left(\frac{\pi^{2}}{4}-\frac{1}{4}(0)-\frac{1}{8}(1)\right)-\left(\frac{\pi^{2}}{16}-\frac{1}{4}(0)-\frac{1}{8}(-1)\right)$	M1
States fully correct answer: either $\frac{3 \pi^{2}}{16}-\frac{1}{4} \quad$ or $\quad \frac{3 \pi^{2}-4}{16}$ o.e.	A1
TOTAL: 7 marks	

NOTES: 12b

Award all 4 marks if correct final answer is seen, even if some of the 6θ angles are missing in the preceding step.

13a		M1
	Graph has a distinct V-shape.	
	Labels vertex $\left(-\frac{3}{2},-4\right)$	A1
	Finds intercept with the y-axis.	M1
	Makes attempt to find x-intercept, for example states that $\|2 x+3\|-4=0$	M1
	Successfully finds both x-intercepts.	A1
		(5 marks)
13b	Recognises that there are two solutions. For example, writing $2 x+3=-\frac{1}{4} x+2$ and $-(2 x+3)=-\frac{1}{4} x+2$	M1
	Makes an attempt to solve both questions for x, by manipulating the algebra.	M1
	Correctly states $x=-\frac{4}{9}$ or $x=-\frac{20}{7}$. Must state both answers.	A1
	Makes an attempt to substitute to find y.	M1
	Correctly finds y and states both sets of coordinates correctly $\left(-\frac{4}{9},-\frac{17}{9}\right)$ and $\left(-\frac{20}{7},-\frac{9}{7}\right)$	A1
		(5 marks)
	TOTAL: 10 marks	

14a	Demonstrates an attempt to find the vectors $\overrightarrow{K L}, \overrightarrow{L M}$ and $\overrightarrow{K M}$	M1
	Finds $\overrightarrow{K L}=(3,0,-6), \overrightarrow{L M}=(2,5,4)$ and $\overrightarrow{K M}=(5,5,-2)$	A1
	Demonstrates an attempt to find $\|\overrightarrow{K L}\|,\|\overrightarrow{L M}\|$ and $\|\overrightarrow{K M}\|$	M1
	$\begin{aligned} & \text { Finds }\|\overrightarrow{K L}\|=\sqrt{(3)^{2}+(0)^{2}+(-6)^{2}}=\sqrt{45} \\ & \text { Finds }\|\overrightarrow{L M}\|=\sqrt{(2)^{2}+(5)^{2}+(4)^{2}}=\sqrt{45} \\ & \text { Finds }\|\overrightarrow{K M}\|=\sqrt{(5)^{2}+(5)^{2}+(-2)^{2}}=\sqrt{54} \end{aligned}$	A1
	Demonstrates an understanding of the need to use the Law of Cosines. Either $c^{2}=a^{2}+b^{2}-2 a b \times \cos C$ (or variation) is seen, or attempt to substitute into formula is made $(\sqrt{54})^{2}=(\sqrt{45})^{2}+(\sqrt{45})^{2}-2(\sqrt{45})(\sqrt{45}) \cos \theta$	M1 ft
	Makes an attempt to simplify the above equation. For example, $-36=-90 \cos \theta$ is seen.	M1 ft
	Shows a logical progression to state $\theta=66.4{ }^{\circ}$	B1
		(7 marks)
14b	States or implies that $\triangle K L M$ is isosceles.	M1
	Makes an attempt to find the missing angles $\angle L K M=\angle L M K=\frac{180-66.421 \ldots}{2}$	M1
	States $\angle L K M=\angle L M K=56.789 \ldots{ }^{\circ}$. Accept awrt 56.8 ${ }^{\circ}$	A1
		(3 marks)
	TOTAL: 10 marks	

NOTES: 14b

Award ft marks for a correct answer to part a using their incorrect answer from earlier in part a.

15a	Shows or implies that if $y=0, t=1$	M1
	nds the coordinates of $P . t=1 \Rightarrow x=3 \quad P(3,0)$	A1
		(2 marks)
15b	Attempts to find a cartesian equation of the curve. For example, $t=x-2$ is substituted into $y=\frac{t-1}{t+2}$	M1
Correctly finds the cartesian equation of the curve $y=\frac{x-3}{x}$ Accept any equivalent answer. For example, $y=1-\frac{3}{x}$		A1
		(2 marks)
15c	Finds $\frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{-2}=\frac{3}{x^{2}}$	M1
Substitutes $t=-1$ to find $x=1$ and $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3}{(1)^{2}}=3$		M1
Finds the gradient of the normal $m_{N}=-\frac{1}{3}$		M1
Substitutes $t=-1$ to find $x=1$ and $y=-2$		A1
Makes an attempt to find the equation of the normal. For example, $y+2=-\frac{1}{3}(x-1)$ is seen		M1
States fully correct answer $x+3 y+5=0$		A1
		(6 marks)
15d	Substitutes $x=t+2$ and $y=\frac{t-1}{t+2}$ into $x+3 y+5=0$ obtaining $t+2+3\left(\frac{t-1}{t+2}\right)+5=0$	M1 ft
Manipulates and simplifies this equation to obtain $t^{2}+12 t+11=0$		M1 ft
Factorises and solves to find $t=-1$ or $t=-11$		M1 ft
Substitutes $t=-11$ to find $x=-9$ and $y=\frac{4}{3}$, i.e. $\left(-9, \frac{4}{3}\right)$		A1 ft
		(4 marks)
TOTAL: 14 marks		

NOTES: 15c Award ft marks for correct answer using incorrect values from part \mathbf{b}.

