LEVEL 3
 Mathematical Studies

1350/1 - Paper 1
Mark scheme
1350
June 2018

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

Alternative method 1		
$\frac{45}{720}(\times 100)$ or 0.0625 or 6.25 or $\frac{50}{810}(\times 100)$ or $0.0617(\ldots)$ or $6.17(.$.	M1	oe eg working in pounds
6.25 and $6.17(\ldots)$ and Javed or 6.3 and 6.2 and Javed or 0.0625 and $0.0617(\ldots)$ and Javed	A2	A1 6.25 and 6.17(...) or 6.3 and 6.2 or 0.0625 and $0.0617(\ldots)$ A1 ft correct conclusion for their values if one answer is correct
Alternative method 2		
$\frac{765}{720}(\times 100)$ or 1.0625 or 106.25 or $\frac{810}{860}(\times 100)$ or $1.0617(.$.$) or 106.17(.$.	M1	oe
1.0625 and 1.0617(...) and Javed or 106.25 and 106.17(...) and Javed	A2	A1 1.0625 and 1.0617(...) or 106.25 and 106.17(...) A1 ft correct conclusion for their values if one answer is correct
Alternative method 3		
$\frac{765}{720} \times 810$ or $\frac{860}{810} \times 720$	M1	
8.606(...) or 8.61 and Javed or 7.64(...) and Javed	A2	A1 8.606(...) or 8.61 or A1 7.64(...) or A1ft correct conclusion for their value

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

2(a)	Alternative method 1		
	Yes and two of it is convenient/easier it is cheaper it is quicker could have a larger sample/all same company or city/all same number of members/ there are 5 distinct clusters	B2	B1 Yes and one statement from the list SC1 its only using one gym
	Alternative method 2		
	No and only views from one gym/the other gyms could be different/you should take a sample from each gym and it's not a random sample	B2	B1 No and one statement from the first list
	Additional Guidance		
	Yes may be implied, eg it is, because... if they say 'it only uses one gym so it is quicker' mark this as B1 not SC1 For 'No' there must be an implication that they know that a cluster sample will only use people from one gym No its not representative of everyone BO No you should use stratified/random sampling B0		

2(b)	Stratified (sampling)	B1	
	Additional Guidance		
	Do not accept a description of a stratified sampling method		

| Q Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |

2(c)	Alternative method 1			
	$580 \div 700 \times 175 \text { or } 145$ or $120 \div 700 \times 175 \text { or } 30$	M1	oe	
	their 145 - their 30 or their 145 - (175 - their 145) or (175 - their 30) - their 30	M1dep	oe	
	115	A1		
	Alternative method 2			
	580-120 or 460	M1		
	their $460 \div 700 \times 175$	M1dep	oe	
	115	A1		
	Additional Guidance			
	Division and multiplication may be done in one step eg 580 $\div 4$			
	It is possible to use ratio $\text { eg } 580: 120=4.83(\ldots): 1$ and $175 \div$ (their $4.83 \ldots+1$) or 30 .(17) gains first M1			

\mathbf{Q}	Answer	Mark	Comments

\mathbf{Q}	Answer	Mark	Comments

3(b)	Alternative method 1		
	160000 - their 158435.31	M1	ft their Month 4 value implied by their 1564.69
	$\begin{aligned} & (710 \times 4)-\text { their } 1564.69 \\ & \text { or } \\ & 2840-\text { their } 1564.69 \end{aligned}$	M1dep	
	1275.(..) and Yes	A1ft	ft their Month 4 value their correct value with no conclusion or incorrect conclusion implies M2
	Alternative method 2		
	$\begin{aligned} & 160000-(710 \times 4) \\ & \text { or } \\ & 160000-2840 \end{aligned}$ or 157160	M1	
	their 157160 - their 158435.31	M1dep	ft their Month 4 value
	1275.(..) and Yes	A1ft	ft their Month 4 value their correct value with no conclusion or incorrect conclusion implies M2
	Alternative method 3		
	Correct method for any month's interest eg Month 1 $160000-159610=390$ and 710 - their 390 or 320	M1	
	$320+319.22+318.44+317.65$	M1dep	ft their part (a) 4 months' interest added with at least 3 correct
	1275.(..) and Yes	A1ft	ft their part (a) correct to 2 dp their correct value with no conclusion or incorrect conclusion implies M2

	Additional Guidance	
	Example of separate months using 2dp rounded up Month 2 159610 - their $159219.22=390.78$ and $710-$ their $390.78=319.22$ Month 3 their 159219.22 - their $158827.66=391.56$ and $710-$ their $391.56=318.44$ Month 4 their 158827.66 - their $158435.31=392.35$ and 710 - their $392.35=317.65$ Calculating the interest for 4 years without considering the 710 gains no marks eg $160000 \times 1.002^{4}=161283.85$ Yes interest is 1283.85	MOMOAO

\mathbf{Q}	Answer	Mark	Comments

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

$\mathbf{5}$ (a)	31.3	B1		
	Additional Guidance			

| 5(b) | 11.8 | B2 | B1 24.6 or 36.4 indicated or used |
| :--- | :--- | :---: | :--- | :--- |
| | Additional Guidance | | |
| | | | |

\mathbf{Q}	Answer	Mark	Comments

5(c)	Median from box plot $=34$ and Compares average in context Examples of comparisons On average the boys from 10A were quicker or the boys from 10A had a better performance or the median was lower for 10A so the students were faster or 10A were faster by 2.7 minutes	B2	ft correct conclusion for their B1 34 with no comparison or comparison or B1 correct comparison of ave value seen eg the median was lower for students were faster	rt (a) corre ge wit A so
	IQR from box plot $=8.5$ and Compares spread in context Examples of comparisons The IQR was lower for the rest of the year group so the times/results were more consistent or the boys times in 10A were more varied	B2	ft correct conclusion for their B1 8.5 with no comparison comparison or B1 The performance for the group was more consistent or B1 the ranges are both 22.5/	rt (b) corre t of h the
	Additional Guidance			
	If students draw a box plot for the results for class 10A then they can compare these instead of stating the values eg The box is narrower for the rest of the group so the results were more consistent eg states the median is smaller/lower for 10A			$\begin{aligned} & \mathrm{B} 2 \\ & \mathrm{~B} 1 \end{aligned}$

	Alternative method 1		
6	Payday Help 235×1.008^{6} or $246.5(\ldots)$	M1	
	See You Through $235=\frac{A}{(1+11.5)^{\frac{6}{365}}}$	M1	Inserts correct values in formula $1+11.5$ can be 12.5 Allow 0.016 or better for $\frac{6}{365}$ Implied by correct rearrangement
	$A=235 \times(1+11.5)^{\frac{6}{365}} \text { or } 244.9(\ldots)$	M1	oe rearranges their equation for A their equation must be of the form $235=\frac{A}{(1+b)^{c}}$
	246.5(...) and 244.9(...)and See You Through loan company is cheaper	A2	A1 246.5(...) and 244.9(...) or A1 ft correct decision for their values with one value correct For Payday help allow 246 or 247 from correct working seen For SYT allow 244 or 245 from correct working seen
	Alternative method 2		
	1.008^{365} or 18.327(...)	M1	oe
	their 18.327(...) - 1 or 17.327(...)	M1	
	their $17.327(\ldots) \times 100$ or $1150 \div 100$	M1	
	1732.(...) and See You Through or 17.32(..) and 11.50 and See You Through	A2	A1 1732.(...) or A1 17.32(..) and 11.50 Or A1 ft correct decision for their value(s) with one value correct

	Additional Guidance	
	Use of 0.016 for 6/365 can gain method marks but not the first accuracy mark. Beware this gives an answer of 244.69 and use of 11.5 instead of 12.5 gives 244.63	

Q	Answer	Mark	Comments

\mathbf{Q}	Answer	Mark	Comments

	Alternative method 1		
	$\left(\frac{10}{25} \times 15\right)+2$ or $6+2$ or 8	M1	oe number of type A
	$\begin{aligned} & 10 \times 0.8+50 \times 0.1 \\ & \text { or } \\ & 8+5 \\ & \text { or } \\ & 13 \end{aligned}$	M1	number of type B
7(b)	$\frac{\text { their8 }}{60}(\times 100)$ and $\frac{\text { their13 }}{80}(\times 100)$ or their $8 \times 4 \div 3$ or 10 (6...) or 10.7 or their $13 \times 3 \div 4$ or 9.75	M1	oe eg fractions of the same denominator decimals scaling up to out of 80 scaling down to out of 60
	13.(...)\% and 16.(...)\% and B or $0.13(\ldots)$ and $0.16(\ldots)$ and B or two correct fractions with the same denominator and Type B or 10.(6...) and 13 and B or 10.7 and 13 and B or 8 and 9.75 and B	A2	A1 two correct values with no decision or with incorrect decision or A1ft correct decision for their values with one correct value seen. their values must be proportions not their 8 of Type A and their 13 of Type B

$10+15+18+\frac{15}{25} \times 5$ or 52	M1	oe number of type A less than 340 cm
$\begin{aligned} & 100 \times 0.02+50 \times 0.56+25 \times 1+15 \times \\ & 0.8 \\ & \text { or } \\ & 2+28+25+12 \\ & \text { or } \\ & 67 \end{aligned}$	M1	number of type B less than 340 cm
$\begin{aligned} & \frac{\text { their } 52}{60}(\times 100) \\ & \text { and } \\ & \frac{\text { their } 67}{80}(\times 100) \\ & \text { or } \\ & \text { their } 52 \times 4 \div 3 \text { or } 69 .(3 \ldots) \\ & \text { or } \\ & \text { their } 67 \times 3 \div 4 \text { or } 50.25 \end{aligned}$	M1	oe eg fractions of the same denominator decimals scaling up to out of 80 scaling down to out of 60
86.(...)\% and 83.(...)\% and B or $0.86(\ldots)$ and 0.83(...) and B or two correct fractions with the same denominator and Type B or 69.(3..) and 67 and B or 52 and 50.25 and B	A2	A1 Two correct values with no decision or with incorrect decision or A1ft correct decision for their values with one correct value seen. their values must be proportions not their 52 of Type A and their 67 of Type B
Additional Guidance		
Allow decimal numerators for fractions of the same denominator eg $\frac{2.6}{20}$ and $\frac{3.25}{20}$		

	eg $\frac{10.6}{80}$ and $\frac{13}{80}$ If using alt 2 and working out the number below 340 cm they may at some point subtract these values for 1 or from 100 as applicable. This will lead to the values in Alt 1	

\mathbf{Q}	Answer	Mark	Comments

	Note that there are five alternative methods for this question and some additional guidance at the end of Alt 5		
8	Alternative method 1		
	15800-11500 or 4300	M1	
	their 4300×0.2 or 860	M1	oe Tax to pay
	$15800-8164$ or 7636	M1	condone use of 8164.01
	their 7636×0.12 or 916.32	M1	oe NI to pay
	$15800 \text { - (their } 860 \text { + their } 916.32 \text {) }$ or $15800-1776.32$	M1dep	dep on $2^{\text {nd }}$ and $4^{\text {th }} \mathrm{M} 1$'s awarded
	14023.68	A1	Net pay per year Implied by correct final answer
	$\begin{aligned} & 3 \times(32+7) \times 48 \\ & \text { or } 117 \times 48 \\ & \text { or } 5616 \end{aligned}$	M1	oe Annual travel and nursery costs
	$\begin{aligned} & \text { (their } 14023.68 \text { - their } 5616) \div 12 \\ & \text { or } \\ & 8407.68 \div 12 \text { or } 700.64 \\ & \text { or } 700 \times 12 \text { or } 8400 \end{aligned}$	M1	their 5616 must be from a combination of travel and nursery costs and their 14023.68 must come from subtracting both their tax and their NI
	700.64 and Yes or 8407.68 and 8400 and Yes	A1ft	ft their 14023.68 if final two method marks are awarded Allow 700.65 or 700.66 if 52 weeks used

$\begin{gathered} 8 \\ \text { cont'd } \end{gathered}$	Alternative method 2		
	15800-11500 or 4300	M1	
	their 4300×0.2 or 860	M1	oe Tax to pay
	15800-8164 or 7636	M1	condone use of 8164.01
	their 7636×0.12 or 916.32	M1	oe NI to pay
	$\begin{aligned} & 15800-\text { (their } 860+\text { their } 916.32 \text {) } \\ & \text { or } \\ & 15800-1776.32 \end{aligned}$	M1dep	dep on $2^{\text {nd }}$ and $4^{\text {th }} \mathrm{M} 1$'s awarded
	14023.68	A1	Net pay per year Implied by correct final answer or 8407.88 seen
	$\begin{aligned} & \text { (their } 14023.68 \div 52)-(3 \times(32+7)) \\ & \text { or } \\ & 269.69-117 \\ & \text { or } \\ & 152.69 \end{aligned}$	M1	Weekly pay after deducting travel and nursery costs their 14023.68 must come from subtracting both their tax and their NI
	$\begin{aligned} & \text { (their } 152.69 \times 48+\text { their } 269.69 \times 4 \text {) } \\ & \div 12 \\ & \text { or } 8407.88 \div 12 \end{aligned}$	M1	
	700.65 or 700.66	A1ft	ft their 14023.68 if final two method marks are awarded

$\begin{gathered} 8 \\ \text { cont'd } \end{gathered}$	Alternative method 3		
	15800-11500 or 4300	M1	
	their 4300×0.2 or 860	M1	oe Tax to pay
	15800-8164 or 7636	M1	condone use of 8164.01
	their 7636×0.12 or 916.32	M1	oe Nl to pay
	$\begin{aligned} & 3 \times(32+7) \times 48 \\ & \text { or } 117 \times 48 \\ & \text { or } 5616 \end{aligned}$	M1	oe Annual travel and nursery costs
	their 860 + their 916.32 + their 5616	M1	Tax + NI + nursery/travel costs
	7392.32	A1	total deductions. Implied by correct final answer or by 8407.68 seen
	$\begin{aligned} & (15800 \text { - their } 7392.32) \div 12 \\ & \text { or } \\ & 15800 \text { - their } 7392.32 \text { and } 700 \times 12 \end{aligned}$	M1	their 7392.32 must be from a combination of tax, NI and travel and nursery costs
	700.64 and $Y e s$ or 8407.68 and 8400 and Yes	A1ft	ft their 7392.32 if final two method marks are awarded Allow 700.65 or 700.66 if 52 weeks used

$\begin{gathered} 8 \\ \text { cont'd } \end{gathered}$	Alternative method 4			
	15800-11500 or 4300	M1		
	(their $4300 \div 12) \times 0.2$ or 358.33×0.2 or 71.67	M1	Tax to pay per month allow 71.66	
	15800-8164 or 7636	M1	condone 8164.01	
	(their $7636 \div 12$) $\times 0.12$ or 636.33×0.12 or 76.36	M1	NI to pay per month	
	$\begin{aligned} & (15800 \div 12)-\text { (their } 71.67+\text { their } \\ & 76.36) \\ & \text { or } \\ & 1316.67-148.03 \end{aligned}$	M1dep	allow 71.66 dep on $2^{\text {nd }}$ and $4^{\text {th }}$ M1's awarded	
	1168.64	A1	Net pay per month Implied by correct final answer	$\times 48 \div 12$ can be replaced with $\times 4$
	$3 \times(32+7) \times 48$ or 117×48 or 5616	M1	Annual travel and nursery costs	
	their 1168.64 - (their $5616 \div 12$) or their 1168.64-468 or 700.64	M1	their 5616 must be from a combination of travel and nursery costs and their 1168.64 must come from subtracting both their tax and their NI	
	700.64 and Yes	A1ft	ft their 1168.64 if final two method marks are awarded Allow 700.65 or 700.66 if 52 weeks used	

| Q Answer | Mark | Comments |
| :---: | :---: | :---: | :---: |

	Note that there are 3 alternative methods for this question. Allow rounding of any of their values		
	Alternative method 1		
	assumes number of hours production per week eg 8 hours per day and 5 days per week $=40$ hours eg 168 hours per week	B1	Total hours per week in range 8-168 Must state their assumption. Not just values seen in a calculation
9(a)	$\mathrm{Vol}=\pi \times 3.5^{2} \times 9$ or 346.(...) or 350 or 3 cans per litre	M1	
	works out number of cans per week eg their hours per week \times [1900, $2150] \div 0.35$ or their hours per week \times [1900, 2150] $\times 3$ their volume may be rounded	M1	hours \times quantity \div their volume in litres or hours \times quantity \times their number of cans per litre Number of cans per litre can be a decimal (Use of 1 can per litre needs stating to accept hours \times quantity ($\times 1$))
	correct or rounded answer for their total number of cans needed eg $40 \times 2000 \div 0.33=242424$ approx 250000 cans per week	A1ft	allow decimal answers and/or rounding must have awarded the 2nd M1
	$\begin{aligned} & \pi \times 7 \times 9 \text { or } 2 \times \pi \times 3.5 \times 9 \\ & \text { or }[189,200] \\ & \text { and } \\ & \pi \times 3.5^{2} \text { or }[36,40] \\ & \text { or } 7 \times 7 \text { or } 49 \end{aligned}$	M1	allow use of 3 or 3.1 for π calculates estimate of curved surface area and calculates estimate of area of top/base 7×7 is putting the circle in a square
	their curved surface area $+2 \times$ their area of top/base $\text { eg } 198+77 \text { (= 275) }$	M1	total surface area of can (correct answer 275)

	allows for waste eg deducts 10% of area of sheet to give 9000	M1	allow 5\% to 25\% they must state this is wastage the waste can be deducted at various points eg from sheets area, from number of cylinders or tops/bases per sheet or by increasing their surface areas
	their sheet area \div their total surface area or their total surface area \times their of cans per week	M1	full cans per sheet must be consistent units their sheet area must be either 10000 or 1000 reduced for wastage or from 100×100 seen
their cans per week \div their cans per sheet or their total surface area for all cans \div their sheet area	M1	This may be multiplied if they work out they need more than one sheet per can	
correct total for their calculation	A1ft	previous M1 must have been awarded answer must be rounded to at least the nearest 10 (may be to less sf)	

Alternative method 2		
assumes number of hours production per week eg 8 hours per day and 5 days per week $=40$ hours eg 168 hours per week	B1	Total hours per week in range 8-168 Must state their assumption. Not just values seen in a calculation
$\mathrm{Vol}=\pi \times 3.5^{2} \times 9$ or 346.(...) or 350 or 3 cans per litre	M1	
works out number of cans per week eg their hours per week \times [1900, $2150] \div 0.35$ or their hours per week \times [1900, 2150] $\times 3$ their volume may be rounded	M1	hours \times quantity \div their volume in litres or hours \times quantity \times their number of cans per litre Number of cans per litre can be a decimal (Use of 1 can per litre needs stating to accept hours \times quantity ($\times 1$))
correct or rounded answer for their total number of cans needed eg $40 \times 2000 \div 0.33=242424$ approx 250000 cans per week	A1ft	allow decimal answers and/or rounding must have awarded the 2nd M1
$\begin{aligned} & \pi \times 7 \times 9 \text { or } 2 \times \pi \times 3.5 \times 9 \\ & \text { or }[189,200] \\ & \text { and } \\ & \pi \times 3.5^{2} \text { or }[36,40] \\ & \text { or } 7 \times 7 \text { or } 49 \end{aligned}$	M1	allow use of 3 or 3.1 for π calculates estimate of curved surface area and calculates estimate of area of top/base 7×7 is putting the circle in a square
allows for waste eg deducts 10% of area of sheet to give 9000	M1	allow 5% to 25% they must state this is wastage the waste can be deducted at various points eg from sheets area, from number of cylinders or tops/bases per sheet or by increasing their surface areas
divides their sheet area by their curved surface area to give number of open cylinders per sheet $\text { eg } 9000 \div 200=45$ or	M1	must be consistent units their sheet area must be either 10000 or 10000 reduced for wastage or from 100×100 seen

	$0.9 \div 0.02=45$ divides their sheet area by their area of top/base to give number of tops/bases per sheet $\text { eg } 10000 \div 40=250$		
		M1	Do not penalise incorrect sheet area here if already penalised
	their cans per week \div their open cylinders per sheet eg $250000 \div 45$ and their cans per week \div their tops/ bases per sheet eg $250000 \div 250$	M1	
	correct total for their calculation eg $5550+1000+1000=7550$ must be sheets for cylinders + sheets for tops + sheets for bases	A1ft	previous M1 must have been awarded the number of tops and bases may have been summed earlier answer must be rounded to at least the nearest 10 (may be to less sf)

Alternative method 3		
assumes number of hours production per week eg 8 hours per day and 5 days per week $=40$ hours eg 168 hours per week	B1	Total hours per week in range $8-168$ Must state their assumption. Not just values seen in a calculation
Vol $=\pi \times 3.5^{2} \times 9$ or $346 .(\ldots)$ or 350 or 3 cans per litre	M1	
works out number of cans per week eg their hours per week $\times[1900$, $2150] \div 0.35$ or their hours per week $\times[1900,2150]$ $\times 3$ their volume may be rounded	M1	hours \times quantity \div their volume in litres or hours \times quantity \times their number of cans per litre
correct or rounded answer for their total number of cans needed eg $40 \times 2000 \div 0.33=242424$ approx 250000 cans per week		(Use of 1 can per litre needs stating to accept hours \times quantity $(\times 1))$
$2 \times \pi \times 3.5$ or 22	A1ft	allow decimal answers and/or rounding
must have awarded the 2 nd M1		

	correct total for their calculation eg $5680+1250+1250=8180$ must be sheets for cylinders + sheets for tops + sheets for bases	A1	previous M1 must have been awarded answer must be rounded to at least the nearest 10 (may be to less sf)	
	Additional Guidance			
	Values for days and weeks cannot just appear without any explanation so $1950 \times 7 \times 24$ with no indication of days/weeks They must at least state either their days per week or hours per day used: Examples gaining B1 Assume a week's production is 2000 (litres per hour) $\times 24 \times 7$ or 2100×7 hours per day $=14700$ so 14700×7 is 102900 per week or $2000 \times 8=16000$ per day so 112000 per week (condone as clearly used 7 days) or One week is 168 hours or A working week is 40 hours			B0
	Using both 1900 and 2150 and averaging later is acceptable			
	If they calculate the volume but then use something completely different to work out number of cans per sheet they lose $1^{\text {st }} \mathrm{M} 1$ but can gain $2^{\text {nd }} \mathrm{M} 1$ in order to access the A1 Example Assume 40 hours per week volume of a can $=346.6 \mathrm{~cm}^{3}$ a can holds 250 ml $40 \times 2000 \div 0.25=320000$			B1 M0 M1 A1ft
	If they calculate the circumference (21.9 or 22) then go on to use this to find the curved surface area mark this on alt1 or 2 (ie do not give M1 for 21.9 and M1 for [189,200])			
	Some find the correct total surface area of 275 (approx.) but then think that they need 3 sheets per can (dividing by 100) This can gain the final M1 (and A1 if correctly worked out and rounded) for multiplying their number of cans by 3			

\mathbf{Q}	Answer	Mark	Comments

	Number of hours per week may be lower so number of sheets/cans would decrease or if amount of wastage was higher they would need more sheets or may produce more/less than 2000 litres per hour so number of sheets would increase or decrease or cans may not be completely full so more sheets/cans would be needed	B1	oe

