Specimen Paper - Decision Mathematics 1 Mark Scheme

Question	Scheme					Marks	AOs
1(a)	(i)	A	B	C	Is $\mathrm{B}>0$?	M1	1.1b
	6	1	4	4	-		
		2	3	11	Yes		
	-	3	2	19	Yes	A1	1.1b
		4	1	26	Yes	A1	1.1b
		5	0	30	No		
	(ii) Final output $=30$					A1	1.1b
						(4)	
(b)	$\begin{aligned} & \frac{1}{6}(6)^{3}+6 k+1=30 \\ & k=-\frac{7}{6} \end{aligned}$					M1 A1ft	$\begin{aligned} & 3.1 \mathrm{a} \\ & 2.2 \mathrm{a} \end{aligned}$
						(2)	
(c)	Prim's algorithm is of cubic order/has cubic complexity					B1	2.2b
						(1)	
(7 marks)							
Notes:							
(a)(i) M1: At least three rows of cells in columns A, B and C completed with a correct first row for and C only A1: Cao - second and third rows correct A1: Cao - fourth and fifth rows correct (ii) A1: Cao (output $=30$) (b) M1: Using $\mathrm{f}(n)$ with $n=6$ and their final output A1ft: Cao following through their final output (c) B1: Cao							

AS Further Mathematics 8FM0
Specimen Paper - Decision Mathematics 1 Mark Scheme

| Question | Marks | AOs |
| :--- | :--- | :--- | :--- |
| 2(a) | | |
| (i) | | |

AS Further Mathematics 8FM0
Specimen Paper - Decision Mathematics 1 Mark Scheme

B1ft: Cao following through their smallest repeat (from a choice of at least two totals)
Question
3(a)

AS Further Mathematics 8FM0
Specimen Paper - Decision Mathematics 1 Mark Scheme

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
A1: Cao (for \(x\)) \\
A1: Cao (minimum completion time)
\end{tabular}} \\
\hline Question \& Scheme \& Marks \& AOs \\
\hline 4(a) \& \begin{tabular}{l}
Let \(x\) be the number of lemon cakes the baker makes and let \(y\) be the number of cherry cakes the baker makes
\[
\text { Minimise } P=x+3 y
\] \\
Subject to
\[
\begin{aligned}
\& x+y \geq 360 \\
\& 2 x+y \leq 1000 \\
\& y \geq 2 x \\
\& x \geq 100 \\
\& (y \geq 0)
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
B1 \\
B1 \\
B1
\end{tabular} \& 2.5
1.2

3.3
3.3
3.3
3.3 \\
\hline \& \& (6) \& \\

\hline (b) \& | |
| :--- |
| (Note to typesetters: change x-axis label to 'number of lemon cakes' and y-axis to 'number of cherry cakes') |
| Objective line drawn or at least two vertices tested |
| Solving correct simultaneous equations for their optimal vertex |
| The baker should make 120 lemon cakes and 240 cherry cakes | \& | B1 |
| :--- |
| B1 |
| B1 |
| B1 |
| M1 |
| M1 |
| A1 | \& 1.1 b

1.1 b
1.1 b
2.2 a

3.1a
1.1 a
3.2a \\
\hline \& \& (7) \& \\
\hline (c) \& $200-\frac{2}{5}(120)-\frac{1}{5}(240)=£ 104$ \& B1ft \& 3.4 \\
\hline \& \& (1) \& \\
\hline
\end{tabular}

AS Further Mathematics 8FM0

Specimen Paper - Decision Mathematics 1 Mark Scheme

Notes:

(a)

B1: Defining variables
B1: Cao (for objective) - must contain 'minimise'
B1: Any one correct (accept any equivalent form for each constraint)
B1: Any two correct
B1: Any three correct
B1: All four correct
(b)

B1: Any two correct lines
B1: Any three correct lines
B1: All four correct lines
B1: Deduce correct feasible region distinctly labelled
M1: Selecting an appropriate mathematical process to solve the problem - either drawing an objective line with the correct gradient (or reciprocal gradient), or testing at least two vertices in R
M1: Solving simultaneous equations for their optimal vertex
A1: Cao (in context - so not in terms of e.g. x and y)
(c)

B1ft: Using correct constraint with their optimal vertex

