

Mark Scheme (Results)

Summer 2019

Pearson Edexcel GCE In Further Mathematics (9FM0) Paper 3B: Further Statistics 1

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code 9FM0_3B_1906_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

AL FM Stats 1 1906 Mark Scheme Final

Qu	Scheme	Marks	AO		
1(a)	[Let $X = \text{no. of prizes Andreia wins}] X \sim B(40, 0.02)$	M1	3.3		
	[Require $P(X \ge 3) = 1 - P(X \le 2)$] = 0.04567 awrt 0.0457	A1	1.1b		
		(2)			
(b)	[Let $Y = \text{no. of the bar when Barney wins}] Y \sim \text{NegBin}(3, 0.02)$	M1	3.3		
	$[P(Y=40)=] {39 \choose 2} \times 0.02^2 \times 0.98^{37} \times 0.02$	M1	3.4		
	= 0.0028071 awrt 0.00281	A1	1.1b		
		(3)			
(c)	$E(Y) = \frac{3}{0.02} = \underline{150}$	B1	1.1b		
		(1)			
		(6 marks)			
	Notes				
(a)	M1 for selecting a suitable model i.e. $B(40, p)$ where p is any probability Written or used, may be implied by a correct ans or 0.037429 from $P(X = 3)$ A1 for awrt 0.0457 (correct answer only $2/2$)				
	2 nd M1 for use of model to form a correct expression				
SC	$p \neq 0.02$ Allow prob of the form $\binom{39}{2} p^3 (1-p)^{37}$ where $0 scores M0M1$				
	A1 for awrt 0.00281 (accept awrt 2.81×10^{-3}) [correct answer with no wo		es 3/3]		
(c)	B1 for 150				

Qu	Scheme	Marks	AO			
2(a)	{Let $C = \text{no of calls in a 20 min period}} \qquad C \sim \text{Po}()$	M1	3.3			
	80 calls per 4-hour period gives $\frac{20}{3}$ per 20 mins i.e. $C \sim \text{Po}(\frac{20}{3})$ $[P(C > 4)] = 1 - P(C \le 4)$	M1	3.4			
	= 0.79437 awrt 0.794	A1 (3)	1.1b			
(b)	$\{X = \text{no. of 5 min periods with no calls }\}$ $X \sim B(4, e^{-\frac{5}{3}})$ P(X = 3) = 0.02186125 awrt 0.0219	M1 A1	3.3 1.1b			
(c)	P(exactly one call) $e^{-\frac{5}{3}} \times \frac{5}{3}$ or $e^{-5} \times 5$	(2) M1	2.1			
	P(exactly one call in each break) = $\left(e^{-\frac{5}{3}} \times \frac{5}{3}\right) \times \left(e^{-5} \times 5\right)$	M1	1.1b			
	= 0.0106052 awrt 0.0106	A1 (3)	1.1b			
		(8 mark	(s)			
	Notes					
(a)	1 st M1 for selecting a Poisson model – written or used. May be implied by 2 nd M1 or a correct Answer.					
	2^{nd} M1 for the correct Poisson Po($\frac{20}{3}$) or Po(6.67) or better seen					
	and writing or using $1 - P(C \le 4)$					
	A1 for awrt 0.794 (correct ans with no incorrect working scores 3/3)					
(b)	M1 for selecting a correct model B(4, 0.189) or better (calc: 0.188875) A1 for using the model to get awrt 0.0219 (correct ans with no incorrect working scores 2/2)					
(c)	1 st M1 for <u>a</u> correct prob of 1 call (expressions in e or values) (allow 0.31479 or awrt 0.315 <u>or</u> 0.033689 or awrt 0.0337)					
	2^{nd} M1 for a correct probability statement or expression. E.g. $P(S = 1 S \sim Po(\frac{5}{3})) \times P(T = 1 T \sim Po(5))$					
SC	e.g. $F \sim \text{Po}(\lambda)$ used in (b) to find $P(F = 0)$ Then if we see $Y \sim \text{Po}(3\lambda)$ and statement $P(F = 1) \times P(Y = 1)$ award M0M1 for awrt 0.0106 (correct ans with no incorrect working scores 3/3)					

Qu	Scheme	Marks	AO			
3.	{ Let $X =$ the number when the spinner is spun} $\mu = 3$	B1	1.1b			
	$\left[E(X^2) = \right] 0.3 + 4 \times 0.1 + 9 \times 0.2 + 16 \times 0.1 + 25 \times 0.3 [= 11.6 \text{ or } \frac{58}{5}]$	M1	1.1b			
	$\sigma^2 \left[= 11.6 - 3^2 = \right] $ 2.6	A1	1.1b			
	$\bar{X} \approx N \left("3", \sqrt{\frac{"2.6"}{80}}^2 \right)$	M1	2.1			
		A1ft	1.1b			
	$P(\bar{X} > 3.25) = [P(Z > 1.3867) =]0.0827589(calc)$ awrt <u>0.0828</u>	A1	3.4			
		(6 mark	(s)			
	Notes					
	B1 for stating or using mean $= 3$					
	1 st M1 for using the given model to attempt $E(X^2)$ with at least 3 correct pr	oducts se	en			
	1 st A1 for Var(X) = 2.6 or $\sigma = \sqrt{2.6} = 1.6124$ (awrt 1.61)					
ALT	Use of pgf (B1 when mean = 3 seen) (M1 when correct $G''(t)$ seen with atter	npt at G"	(1))			
	$G(t) = 0.3t + 0.1t^{2} + 0.2t^{3} + 0.1t^{4} + 0.3t^{5}$					
	$G'(t) = 0.3 + 0.2t + 0.6t^2 + 0.4t^3 + 1.5t^4$					
	$G''(t) = 0.2 + 1.2t + 1.2t^2 + 6t^3$ leading to $G''(1) = 8.6$					
	2^{nd} M1 for use of CLT – must use \overline{X} and normal $\underline{\text{or}}$ sight of $N\left("3", \sqrt{\frac{"2.6"}{80}}^2\right)$ with any letter					
	2 nd A1ft for a correct mean and variance, ft their 3 and their 2.6					
	This M1A1ft may be implied by sight of correct st. dev. used in a standardisation leading to $P(Z > 1.39)$ Must see correct use of Z					
	NB $\frac{2.6}{80} = 0.0325$ and $\sqrt{\frac{2.6}{80}} = 0.18027$ so allow e.g. N(3, awrt $(0.180)^2$)					
	3 rd A1 for using the normal model to find probability awrt 0.0828					
ALT	Use of $\sum X$ (If see clear attempt at P($\Sigma X > 260$) condone P($\Sigma X > 260.5$) then:					
	$2^{\text{nd}} \text{ M1 for } \Sigma X \sim \text{N}() \text{ or any letter } \sim \text{N}("240", \sqrt{"2.6" \times 80}^2")$					
	2^{nd} A1ft for mean = "3"×80 = 240 and variance = "2.6"×80 = 208					
	May see P($\Sigma X > 260.5$) = 0.077597 but it will only score 2 nd M1 2 nd A1ft and 3 rd A0					

3.3 rks 1.40 2.5 2.1 3.3 1.18 42 1.18 42					
2.5 2.1 3.3 1.16 42 1.16 42					
2.1 3.3 1.16 42 1.16 42					
1.16 A2					
1.18 12					
1.18 12					
اطلمليانا					
1.1b2!2b					
$\frac{1}{12}$ 3.3 1.2					
(13.4					
$\begin{bmatrix} 1.1b \text{ x2} \\ 3.3 \end{bmatrix}$					
'					
2.5					
so 1.1b					
(3).1b					
1.13.3					
2.26.4					
)					
2.2b.1b					
(3)					
2 már ks)					
marks)					
,					
1 st M1 for selecting the correct Po model. Sights use of Po(7.5) may be implied by 2 nd M1 Mid Nor choosing this emission that the majorar of the problem of the proble					
ot $P(X \leq 2)$					
13ts M11 for pooling dast 2 desses (A115 $\sqrt{3}$ and but except $\sqrt{2}$ or set notation but not $P(X \le 2)$ $2^{nd}_{2^n}$ M11 for at least 3 correct values an expressions artifact governorm at least 2 sf 1^{st} A1 for awrt 8.31 (8.31 gets 3/3) [NB no pooling gives awrt 16.8458 and implies M0M1A0]					
M0M1A0]					
1st B1 for 3 degrees of freedom 2nd B1ft for critical value of 7.815 (e.g. $\nu = 4$ use 9.488) 3 but for a write 0.0419 or a write one-tusion (non-contextual ignore any contradictory contextual comments or fit addition of their two probs provided both are 0 < prob < 0.025 (awrt 3sf)					
confinents ()					
onclusion					
Oliciusion					
This mark can be implied by a fully correct solution ending with correct contextual conclusion 2^{1d^4} M^1 for correct confection the implied by a fully correct solution ending with correct contextual conclusion 2^{1d^4} M^1 for correct probability statement of $1 - P(M \le 1)$ dep on a binomial selected 1^4 1/540 for general arcange [1004] 3^2 (0.94154) dep on user of 1^3 (8, "0.0419") or better					
n (a) which					
.3) here)					
.5) 11616)					
cultivated					
ild					

Qu	Scheme	Marks		AO		
6 (a) Qu	$G(1) = 1 \implies k \ln 2 = 1$ so $k = \frac{1}{1 - 2}$ Scheme				A0	
7(a)(i)	G(1) = 1 \Rightarrow $k \ln 2 = 1$ so $k = \frac{1}{\ln 2}$ Scheme $[B \sim \text{Geo}(\frac{1}{3})] P(B = 4) = \left(\frac{2}{3}\right)^3 \times \frac{1}{3}$	M		(3,3		
(b)	$\begin{bmatrix} C(t) & 1 & [\ln 2 & \ln(2 & t)] & \frac{8}{8}C'(t) & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & $	A 1	M1	` ′	_b 2.1	
(ii)	$\begin{cases} G(t) = \frac{1}{\ln 2} \left[\ln 2 - \ln(2 - t) \right] & \Rightarrow \Box G(t) = \frac{1}{\ln 2} \left[\frac{1}{2 - t} \right] & \text{or } \frac{1}{\ln 2} (2 - t) \end{cases}$	M	A1	2.1	1.1b	
	$\begin{cases} G(t) = \frac{1}{\ln 2} \left[\ln 2 - \ln(2 - t) \right] & \Rightarrow \frac{8}{8} G'(t) = \frac{1}{\ln 2} \left[\frac{1}{2 - t} \right] \text{ or } \frac{1}{\ln 2} (2 - t)^{-1} \\ P(B \le 5) = 1 - P(B > 5) & \text{or } 1 - \left(\frac{2}{3}\right)^{5} \\ [E(X) =] G'(1) = \frac{1}{\ln 2} & = \frac{211}{243} \end{cases}$				ы.1b	
	$\ln 2$ $\frac{243}{1}$		(4)			
(b)	$\mathbb{E}(\mathcal{B}_t^2) = \frac{\text{Var}(\mathcal{B}) + \left[\mathbb{E}(\mathcal{B})\right]^2}{\left(2 + \frac{1}{2}\right)^2}$	M	M1 A1	2.1	2.1 1.1b	
	$E(R_t^2) = \frac{\text{Var}(B) + [E(B)]^2}{\ln 2} $ From formula booklet: $E(B) = \frac{1}{1} = 3$ and $Var(B) = \frac{1 - \frac{1}{3}}{(2 - \frac{1}{3})^2} = 6$ $Var(X) = G''(1) + G'(1) - [G'(1)]^{\frac{1}{3}} = \frac{1}{\ln 2} + \frac{1}{\ln 2} - \left(\frac{1}{\ln 2}\right)^{\frac{2}{3}}$ So $E(B^2) = 6 + 9 = \underline{15}$	B1		1.1		
	$Var(X) = G''(1) + G'(1) - \left[G'(1)\right]^{\frac{1}{3}} = \frac{1}{\ln 2} + \frac{1}{\ln 2} - \left(\frac{1}{\ln 2}\right)^{\frac{1}{3}}$					
	So $E(B^2) = 6 + 9 = 15$ If $Z = 112 = 11$	A1	(3)	1.1	b	
(c)	[Let $R = \text{no. of the spin when it first lands on red}] X = R \frac{1}{\text{lnGe}} \left(2 - \frac{1}{3} \right) \ln 2$	M	ΑΊ	3.3	1.1b	
	Paguira $F(a^X) = \sum_{n=1}^{\infty} a^x (1)^{x-1} 2$				^a 3.1a	
(c)	Require $E(x^{2}) = C \cos f \sin (x^{2}) = C \cos f \cos ($	IVI .	^L M1	3.1	43.1a	
	$G'''(t) = \frac{1}{\ln 2} \frac{2^{-1}}{(2-t)^3} = \frac{2e}{3} \sum_{n=1}^{\infty} \left(\frac{e}{3}\right)^{x-1}$	M	A1ft	2.1	1.1b	
	x=1					
	$P(X=3) = \frac{G'''(0)}{3!} = \frac{2e}{3} \times \frac{1}{1 - \frac{e}{3}} \text{ or } \frac{2e}{3 - e}$	A1	M1		_Б 3.2а	
	$E(e^X) = 19.297$ {> 15 = $E(B^2)$ } $= \frac{1}{241.6} = \frac{1}{241.6} = 0.0601122$ awrt 0.06	01 1	A1	(2) ,2	1.1b a	
	Tamara should choose red since it has the 4 heater expected score			` ′	arks)	
	Notes		, ,	mai	-	
(a)						
(a)(i) (b)	M1 for selecting the correct model i.e. $Geo(p)$ (May be implied by a correct $A_1^{st} M_{tor}^{1} \frac{for}{81}$ an attempt to differentiate $G(t)$ 988. $A(2-t)^{-1}$ (o.e.)	exp	ressic	on)		
		MIA for foruntspreest-firsty derivative (condense modes to find a extrect expression				
	And Ander for concess $E(N)$ or C on C of a control C and C of					
				any	where	
(1-)	2^{nd} M1 for attempting second derivative (ft their G'(t))			any	where	
(b)	2 nd M1 for attempting second derivative (ft their $G'(t)$) N/14 After for uitable str2te great white $E(\mathcal{B}^2)$ in dealer we of $G'(t)$ = lawrt 1.44)	ot <i>k</i>)	seen	any	where	
	2 nd M1 for attempting second derivative (ft their G'(t)) M1 After for untable strated sterior funder (Bindon love Gust) of Gust of Gust lawrt 1.44) B4 Mar use a correct for the love to the correct of the correct	ot <i>k</i>)	seen	any	where	
	2 nd M1 for attempting second derivative (ft their G'(t)) M1 After for untable strated sterior funder (Bindon love Gust) of Gust of Gust lawrt 1.44) B4 Mar use a correct for the love to the correct of the correct	ot <i>k</i>)	seen	any	where	
	2 nd M1 for attempting second derivative (ft their $G'(t)$) N/14 After for uitable str2te great white $E(\mathcal{B}^2)$ in dealer we of $G'(t)$ = lawrt 1.44)	ot k)	seen Pa)			
	2 nd M1 for attempting second derivative (ft their $G'(t)$) M1 After for uitable str2ttly to find $E(B)$ dealto we wish of $G'(t)$ awrt 1.44) B1 M1 for 15 $\frac{1}{4^n}$ A1 for $\frac{1}{1^n}$ $\frac{1}{2^n}$ o.e. but must simplify i.e. collect like terms Formula for $E(B^2)$ A1 low M1B1A0 for $E(B^2) = \frac{1}{2^n}$ (o.e.) [Mark final answer – penalise incor NB 0.8040211 is A0 unless exact answer seen	ot k)	la)	vork	etc]	
	2 nd M1 for attempting second derivative (ft their $G'(t)$) M1 After for uitable str2ttly to find $E(B)$ dealto we wish of $G'(t)$ awrt 1.44) B1 M1 for 15 $\frac{1}{4^n}$ A1 for $\frac{1}{1^n}$ $\frac{1}{2^n}$ o.e. but must simplify i.e. collect like terms Formula for $E(B^2)$ A1 low M1B1A0 for $E(B^2) = \frac{1}{2^n}$ (o.e.) [Mark final answer – penalise incor NB 0.8040211 is A0 unless exact answer seen	ot k)	la)	vork	etc]	
SC	2 nd M1 for attempting second derivative (ft their $G'(t)$) M1 After for uitable str2ttly to find $E(B)$ dealto we wish of $G'(t)$ awrt 1.44) B1 M1 for 15 $\frac{1}{4^n}$ A1 for $\frac{1}{1^n}$ $\frac{1}{2^n}$ o.e. but must simplify i.e. collect like terms Formula for $E(B^2)$ A1 low M1B1A0 for $E(B^2) = \frac{1}{2^n}$ (o.e.) [Mark final answer – penalise incor NB 0.8040211 is A0 unless exact answer seen	ot k)	la)	vork	etc]	
SC	2 nd M1 for attempting second derivative (ft their $G'(t)$) M1 After for uitable str2ttly to find $E(B)$ dealto we wish of $G'(t)$ awrt 1.44) B1 M1 for 15 $\frac{1}{4^n}$ A1 for $\frac{1}{1^n}$ $\frac{1}{2^n}$ o.e. but must simplify i.e. collect like terms Formula for $E(B^2)$ A1 low M1B1A0 for $E(B^2) = \frac{1}{2^n}$ (o.e.) [Mark final answer – penalise incor NB 0.8040211 is A0 unless exact answer seen	ot k)	la)	vork	etc]	
SC	2nd M1 for attempting second derivative (ft their $G'(t)$) M14 After for virtable extrated special wat oxitic be (Bond and wo Gue) of $G_{n2}^{1/4}$) awrt 1.44) B14 Mor use of three or react for four wat oxitic be (Bond and wo Gue) of $G_{n2}^{1/4}$) the correct for $G_{n2}^{1/4}$ A1 for $G_{n2}^{1/4}$ o.e. but must simplify i.e. collect like terms Formula for $G_{n2}^{1/4}$ After M1B1A0 for $G_{n2}^{1/4}$ (o.e.) [Mark final answer – penalise incor NB 0.8040211 is A0 unless exact answer seen 1st M1 for choosing a suitable geometric model (sight of $G_{n2}^{1/4}$) or at least 3 1st M1 for a suitable strategy to solve the problem (finding link with Macla 2nd M1 for realising the need for appropriate expected value and Using Grow Need mention of correct of a part of the finding link with Macla 2nd M1 for a suitable strategy to turn the expected value and Using Grow NB simply finding $G_{n2}^{1/4}$ in $G_{n2}^{1/4}$ and $G_{n2}^{1/4}$ or $G_{n2}^{1/4}$ and $G_{n2}^{1/4}$ and $G_{n2}^{1/4}$ or $G_{n2}^{1/4}$ or $G_{n2}^{1/4}$ and $G_{n2}^{1/4}$ or $G_{n2}^{1/4}$ and $G_{n2}^{1/4}$ or $G_{n2}^{1/4}$ or $G_{n2}^{1/4}$ and $G_{n2}^{1/4}$ of $G_{n2}^{1/4}$ and $G_{n2}^{1/4}$ or $G_{n2}^{1/4}$ and $G_{n2}^{1/4}$ or $G_$	con consumd	log warect particularly seed seed seed seed seed seed seed see	vork proba sum s.	etc] abilities and $f(x)$	
(c) (c)	2nd M1 for attempting second derivative (ft their $G'(t)$) M1 After considering second derivative $E(B^2)$ deallow $E(B^2)$ derivative of $E(B^2)$ derivative in (b) (condone) $E(B^2)$ derivative in (b) (provided $E(B^2)$) and for a suitable strategy to solve the problem (finding link with Macla 2nd M1 for realising the need for appropriate expected value and using $E(E(B^2))$ and $E(E(B^2))$ derivative in (b) (provided $E(E(B^2))$ or $E(E(E(E)))$ derivative in (b) (provided $E(E(E))$) of $E(E(E))$ derivative in (c) (provided $E(E(E))$) of $E(E(E))$ derivative in (d) (provided $E(E(E))$) of $E(E(E))$ derivative in (e) (provided $E(E(E))$) of $E(E(E))$ derivative in (e) (provided $E(E)$) of $E(E(E))$ derivative in (e) (provided $E(E)$) of $E(E)$ derivative in (e) (provided $E(E)$) of $E(E)$ derivative in (for a suitable strategy to turn the expression into a sum that can be for $E(E)$ derivative in (for a suitable strategy to turn the expression into a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a suitable strategy to turn the expression into a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a sum that can be	rect conversions consum to the	log warect particularly seed seed seed seed seed seed seed see	vork oroba sum s.	etc] abilities and $f(x)$	
(c) (c)	2nd M1 for attempting second derivative (ft their $G'(t)$) M14 After for virtable extrated special wat oxitic be (Bond and wo Gue) of $G_{n2}^{1/4}$) awrt 1.44) B14 Mor use of three or react for four wat oxitic be (Bond and wo Gue) of $G_{n2}^{1/4}$) the correct for $G_{n2}^{1/4}$ A1 for $G_{n2}^{1/4}$ o.e. but must simplify i.e. collect like terms Formula for $G_{n2}^{1/4}$ After M1B1A0 for $G_{n2}^{1/4}$ (o.e.) [Mark final answer – penalise incor NB 0.8040211 is A0 unless exact answer seen 1st M1 for choosing a suitable geometric model (sight of $G_{n2}^{1/4}$) or at least 3 1st M1 for a suitable strategy to solve the problem (finding link with Macla 2nd M1 for realising the need for appropriate expected value and Using Grow Need mention of correct of a part of the finding link with Macla 2nd M1 for a suitable strategy to turn the expected value and Using Grow NB simply finding $G_{n2}^{1/4}$ in $G_{n2}^{1/4}$ and $G_{n2}^{1/4}$ or $G_{n2}^{1/4}$ and $G_{n2}^{1/4}$ and $G_{n2}^{1/4}$ or $G_{n2}^{1/4}$ or $G_{n2}^{1/4}$ and $G_{n2}^{1/4}$ or $G_{n2}^{1/4}$ and $G_{n2}^{1/4}$ or $G_{n2}^{1/4}$ or $G_{n2}^{1/4}$ and $G_{n2}^{1/4}$ of $G_{n2}^{1/4}$ and $G_{n2}^{1/4}$ or $G_{n2}^{1/4}$ and $G_{n2}^{1/4}$ or $G_$	rect conversions consum to the	log warect particularly seed seed seed seed seed seed seed see	vork oroba sum s.	etc] abilities and $f(x)$	
(c) (c)	2nd M1 for attempting second derivative (ft their $G'(t)$) M1 After considering second derivative $E(B^2)$ deallow $E(B^2)$ derivative of $E(B^2)$ derivative in (b) (condone) $E(B^2)$ derivative in (b) (provided $E(B^2)$) and for a suitable strategy to solve the problem (finding link with Macla 2nd M1 for realising the need for appropriate expected value and using $E(E(B^2))$ and $E(E(B^2))$ derivative in (b) (provided $E(E(B^2))$ or $E(E(E(E)))$ derivative in (b) (provided $E(E(E))$) of $E(E(E))$ derivative in (c) (provided $E(E(E))$) of $E(E(E))$ derivative in (d) (provided $E(E(E))$) of $E(E(E))$ derivative in (e) (provided $E(E(E))$) of $E(E(E))$ derivative in (e) (provided $E(E)$) of $E(E(E))$ derivative in (e) (provided $E(E)$) of $E(E)$ derivative in (e) (provided $E(E)$) of $E(E)$ derivative in (for a suitable strategy to turn the expression into a sum that can be for $E(E)$ derivative in (for a suitable strategy to turn the expression into a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a suitable strategy to turn the expression into a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a sum that can be for $E(E)$ derivative in (for a sum that can be	rect consum ore consum to the	log warect particularly seed seed seed seed seed seed seed see	vork oroba sum s.	etc] abilities and $f(x)$	