Binomial Expansion Revision Tutorial Questions

Q1.
(a) Find the first 3 terms, in ascending powers of x, of the binomial expansion of

$$
(2-3 x)^{6}
$$

giving each term in its simplest form.
(b) Hence, or otherwise, find the first 3 terms, in ascending powers of x, of the expansion of

$$
\left(1+\frac{x}{2}\right)(2-3 x)^{6}
$$

Q2.

$$
\mathrm{f}(x)=(3+2 x)^{-3}, \quad|x|<\frac{3}{2}
$$

Find the binomial expansion of $\mathrm{f}(x)$, in ascending powers of x, as far as the term in x^{3}.
Give each coefficient as a simplified fraction.

Q3.
(a) Find the binomial expansion of

$$
\frac{1}{\sqrt{ }(9-10 x)}, \quad|x|<\frac{9}{10}
$$

in ascending powers of x up to and including the term in x^{2}.
Give each coefficient as a simplified fraction.
(b) Hence, or otherwise, find the expansion of

$$
\frac{3+x}{\sqrt{ }(9-10 x)}, \quad|x|<\frac{9}{10}
$$

in ascending powers of x, up to and including the term in x^{2}.
Give each coefficient as a simplified fraction.

Q4.

(a) Find the first 4 terms of the binomial expansion, in ascending powers of x, of

$$
\left(1+\frac{x}{4}\right)^{8}
$$

giving each term in its simplest form.
(b) Use your expansion to estimate the value of $(1.025)^{8}$, giving your answer to 4 decimal places.

Q5.
(a) Use the binomial expansion to show that

$$
\sqrt{\left(\frac{1+x}{1-x}\right)} \approx 1+x+\frac{1}{2} x^{2}, \quad|x|<1
$$

(b) Substitute $x=\frac{1}{26}$ into

$$
\sqrt{\left(\frac{1+x}{1-x}\right)}=1+x+\frac{1}{2} x^{2}
$$

to obtain an approximation to $\sqrt{ } 3$
Give your answer in the form $\frac{a}{b}$ where a and b are integers.

Q6.
$\frac{2 x^{2}+5 x-10}{(x-1)(x+2)} \equiv A+\frac{B}{x-1}+\frac{C}{x+2}$
(a) Find the values of the constants A, B and C.

$$
\begin{equation*}
\frac{2 x^{2}+5 x-10}{(x-1)(x+2)} \tag{4}
\end{equation*}
$$

in ascending powers of x, as far as the
(b) Hence, or otherwise, expand in ascend
term in x^{2}. Give each coefficient as a simplified fraction.

